
Chapter 4 

Financial Operations and their Evaluation: 
Decisional Criteria 

4.1. Calculation of capital values: fairness 

In financial practice there is often the problem of evaluation, at a given time and 
based on a given exchange law, of a finite set of financial supplies, i.e. of incomes or 
payments to be made at a fixed time. It is easy to generalize about an infinite 
number of supplies or to a continuous flow of payments as a theoretical model 
which approximates a sequence of financial transactions of small amount with close 
maturity.  

Such a set is called a financial operation because it is the financial reflex of 
economic acts regarding flows or funds (like transferring assets, payments for 
services, loans with a unique or periodic repayment schedule, installation or 
management of industrial equipment, etc.). 

Referring to the concept of financial supply (T,S) as well as to the equivalence 
principle based on a given exchange law, a financial operation O, which we will 
firstly consider as discrete payments, can then be defined as union of supplies, using  

O = (Th h 1
 nU ,Sh )  (4.1) 

If n , it is necessary to introduce some conditions. Without loss of 
generality we will consider {Th} increasing with h, i.e. in chronological order; in 
addition, Sh>0 are incomes for the agent “A” whereas Sh<0 are payments. The 
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operation O is also called a financial project if it is referred to dated amounts that 
are expected by a feasible project. 

The operation O can be alternatively expressed in transposed form with respect 
to (4.1), using a pair of n-dimensional vectors (“maturities {Th}, cash flow1{Sh}”, 
h=1,...,n), instead of a n-tuple of two-dimensional vectors which identify the 
supplies “time Th, amount Sh”. Therefore, we can write 

O = (T1, T2,...,Tn)&(S1, S2,...,Sn) = {Th}&{Sh} (4.1') 

where & = correspondence between vector components and where corresponding 
pairs (Th,Sh) with the same h identify the supply. 

It is usual to distinguish in (4.1) between the cases n=2, which give rise to a 
simple operation, and n>2, which give rise to a complex operation. A simple 
operation, if S1 and S2 have opposite sign, is just an exchange between two amounts 
with different maturities.   

Let us consider an economic agent “A” who wants to value O at time T, based on 
an indifference relation  which gives rise to the exchange factors z(X,Y), given by 
(2,5'), which express the used financial law. We then define as capital value (or just 
value) of the operation O at time T (from the point of view of agent “A”) the amount 
V(T;O,z) so that “A” considers O to be fairly exchangeable with the supply (T, 
V(T;O,z)). In other words, from the point of view of “A” there is indifference 
between obtaining the supplies O and acquiring the amount V(T;O,z) in T. 

We can apply what we have said above to calculate the selling value of a 
company. If O, expressed by (4.1), concerns all financial transactions related to its 
management and expected by one party (for example, the seller) in T<T1 (and then 
T<Th, h), then V(T;O,z) is the value in T given to the company based on the law z, 
which has to be compared with the offered price to judge whether it is convenient to 
sell2. 

To measure V(T;O,z) we can consider that, because of results in section 2.2, the 
amount exchangeable in T with Sh in Th is S'h = Sh:z(Th,T), and this is the value in T 
of (Th,Sh); furthermore, we will usually assume the additive property, by which the 

                                   
1 Correctly speaking, flow should be used for the continuous case, but it is also frequently 
used in finance for the discrete case when there is a sequence of payments.   
2 The comparison between values (subjective, as a consequence of the choice of z) and prices 
(objective, because they are fixed by the market) is the basis of the decisions and choices 
theory between “financial projects” that we will consider later. 



Financial Operations     93 

value in T of the union of supplies O = 1( , )n
h hh T S  is the sum of the values at the 

same time T of each supply. Therefore 

    V (T ;O, z ) S 'hh 1
n

Shz(Th ,T )h 1
n

.          (4.2) 

When there is no ambiguity on O and on the law z, we will write V(T) instead of 
V(T;O,z). 

We will say that “A” considers fair (or well-balanced) the operation O in T 
based on his choice of law z or, briefly, that the operation O is fair in T if and only if 
V(T;O,z) = 0.  

Adopting exchange laws z(X,Y) which are always positive with any X and Y, the 
fairness of O implies that there is no concordance in algebraic sign of all amounts of 
O. 

A simple fair operation is a pure exchange (i.e. a repurchase agreement) 
balanced according to z, resulting in S2 = -S1

.z(T1,T2). 

Complements on fair operations 

We will say that an exchange law identified by , according to which the fairness 
of an operation O is valued, verifies the invariance property if an operation 
considered fair in T0 is also fair in all other times T. Furthermore, given that fairness 
implies the zero value of O, the additive property implies that the union of two or 
more operations (defined as the union of the sets of their supplies), all judged fair in 
T0, is fair in T0. 

As invariance does not generally hold, then the value V(T;O,z) if it is zero in 
T=T0 can become different from zero in a different T; it is then necessary to specify 
the evaluation time. However, given that, as can be proved, the strong 
decomposability implies additivity and invariance together, if z satisfies such a 
property, the judgment of fairness of the operations does not depend on the 
evaluation time T. 

It is important to observe here that – given that an exchange law implies the 
payment of interest for the deferring of the availability of a principal amount – 
saying that “A” considers the operation O to be fair having assumed the law z(X,Y) 
means that O gives exactly the return expressed by z. In other words, i.e. with 
inflows and outflows at the times Th on a profitable account ruled by such a law, if 
V(T0;O,z) = 0, this means that in T0 the evaluations of Sh, taking into account the 
interest, are balanced. If instead V(T0;O,z) > 0 (< 0), the operation O gives rise to a 
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spread of positive (negative) returns added to the return implied by the law z. This is 
the starting point of the theory of comparisons and choices between financial 
operations on the basis of the returns. 

If the law z identified by  is uniform, not decomposable, and therefore the 
exchange factor has the form g( ) (see (2.40)), it is enough to replace in (4.2) z(Th,T) 
= g( h), where h = T-Th, and then 

V (T;O,z) Sh g(T Th )
h 1
n                 (4.3) 

Particular cases 

a) Simple delayed interest (SDI) law at rate i and its conjugate rational discount 
(rd) 

SDI: g( ) = 1 + i , if  > 0; rd: g( ) = 1/(1 + i | , if  < 0 

b) Simple advance interest (SAI) law at rate d and its conjugate simple discount 
(sd)  

SAI: g( ) = 1/(1 - d , if  > 0; sd: g( ) = 1 - d | , if  < 0 

If the law z identified by  is strongly decomposable (s.dec), non-uniform, 
characterized by an intensity ( ) as a function of current time (see section 2.4), 

the exchange factor in (4.2) is written3: z(Th,T) = exp ( ) 
h

T
T

d . 

If the law z identified by  is uniform and also s.dec, it falls within (as shown in 
Chapter 2) the exponential regime where  is a relation of uniform equivalence. 
Therefore, it gives rise to the following case. 

c) Continuously compound interest (CCI) law with intensity  and its conjugate 
continuously compound discount (CCD) 

CCI: g( ) = e , (  > 0 ); CCD: g( ) = e , (  < 0 ) 

 
 
and then 
                                   

3 It is well known that exp ( ) 
b
a

d  is often used, for simplicity, instead of  e
( ) a

b d
. 



Financial Operations     95 

  V (T;O,z) Sh e (T-Th )
h 1

n
Sh (1+i )T-Th

h 1

n

         (4.4) 

Exercise 4.1 

Let us consider the following operation  

O = {(0, -1,500) (2.5, -1,850) (3.5, 520 (5, 4,500)} 

where time is measured in months, and let us calculate its value in T=4 using the 
SDI law with an annual rate i = 5.5% and its conjugate rd. 

A. By applying (4.3), we obtain 

4 1.5 0.5
(4) 1,500 (1 0.055 ) 1,850 (1 (4) 0.055 ) 520 (1+ 0.055 )

12 12 12
1

           4,500  1,610.44
1

1+ 0.055
12

V V

 

Exercise 4.2 

Let us consider the same operation as in Exercise 4.1, i.e.  

O = {(0, -1,500) (2.5, -1,850) (3.5, 520) (5, 4,500)} 

where time is measured in months, and let us calculate its value at time T=4 using 
the SAI law with an annual discount rate d equivalent to i =5.5% and its conjugate 
sd. 

A. The equivalent rate d is 0.052133. Applying (4.3) 

4

1 1
            520 4,500 (1 0.052133 ) 1,612.920

0.5 121- 0.052133
12

V
1 1

1,500   1,850
4 1.5

1- 0.052133 1- 0.052133 
12 12
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Exercise 4.3  

Let us consider the same operation as in Exercise 4.1, i.e.  

O = {(0, –1,500) (2.5, –1,850) (3.5, 520) (5, 4,500)} 

where time is measured in years, and let us calculate its value at time T=4 using the 
exponential exchange law with an annual interest i = 6%. 

A. The equivalent instantaneous intensity  is 0.058269. By applying (4.4)  

g( ) = e0.058269 = 1.06  

and then 

V(4) = 4 1,5 0,5 -11500  1.06 1850  1.06 520  1.06 4500 1.06 = 867.97 

The value can also be found with an Excel spreadsheet where in the 1st row we 
put the rate values and evaluation time, in the 2nd row the column’s titles and from 
the 3rd to 6th rows the needed values: terms and amounts of supplies; exchange 
factors from the terms to 4; amount valued at time 4, then the sum gives V(4) = 
867.97. The following table is obtained. 
 

Rate = 0.06 Time = 4 

Term Amount Exchange factor at 4 Value at 4 

0.0 –1,500.00 1.2624770 –1,893.715 

2.5 –1,850.00 1.0913368 –2,018.973 

3.5 520.00 1.0295630 535.373 

5.0 4,500.00 0.9433962 4,245.283 

  V(4) = 867.967 

Table 4.1. Calculation of values 

The Excel instructions are as follows. B1: 0.06; D1: 4. The first two rows are for 
data and column titles; from the 3rd to 6th rows: 

– column A (maturity): A3: 0; A4: 2.5; A5: 3.5; A6: 5; 

– column B (amounts): B3: –1,500; B4: –1,850; B5: 520; B6: 4,500; 

– column C (exchange factors in 4): C3: = (1+B$1)^(D$1-A3); copy C3, then 
paste on C4 to C6; 

– column D (evaluation in 4): D3: = B3*C3; copy D3, then paste on D4 to D6; 
(value at time 4): D7: = SUM(D3;D6). 
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Financial operation with continuous flow 

Let us consider briefly the calculation of the value of operations with continuous 
flow. In the continuous case the elementary supply is expressed by [t, (t)dt  with 

(t) defined in t'  t  t" and therein continuous (however, to calculate the values the 
integrability is enough). Then (4.2), (4.3), (4.4) become respectively 

V (T;O,z) (t)z(t,T )dt
t'
t"                 (4.2') 

V (T;O) (t)g(T t)dt
t'
t"                 (4.3')  

V (T;O) (t)e (T t)dt
t'
t"                   (4.4') 

Using an s.dec and non-uniform exchange law, the exponential in (4.4') becomes 

exp ( )T
t

d . 

Naturally, there can be a mixed operation, which puts together continuous and 
discrete operations, and due to additivity the value will be given by the sum of the 
values (4.2) and (4.2') (or of the values for the other particular cases). 

4.2. Retrospective and prospective reserve 

With reference to an operation O and an exchange law z(X,Y), let us assume T in 
the interval [T1,Tn] is logically distinct

4 from each Th. Let r be the number of 
supplies before T and n-r those after T (0  r  n).  

We then define as retrospective reserve (briefly: retro-reserve) of O at time T 
according to z the amount M(T;O,z) given by the opposite of the value in T of the 
sub-operation O' consisting of the set of all supplies of O before T. If there is no 
ambiguity, we write M(T) instead of M(T;O,z). 

We define as prospective reserve (briefly: pro-reserve), or residual value, of O 
at time T according to z the amount W(T;O,z) given by the value in T of the sub-
operation O" consisting of the set of all supplies of O after T. If there is no 
ambiguity, we write W(T) instead of W(T;O,z). 
                                   
4 By logically distinct we mean that T is different from the time of payment Th or, if they 
coincide, that there is a method to establish if the corresponding Sh has to be added to the 
payments before or after T (for example, with a rule of “delayed” or “advance” payment per 
period). 
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Because of (4.1) we have:  

M (T;O,z) Shh 1
r

 z(Th ,T )               (4.5) 

W (T;O,z) Shh r 1
n

 z(Th ,T )               (4.6) 

Notice that in (4.5) we have only accumulation processes and in (4.6) only 
discount processes. Therefore, due to (2.5'), instead of z(Th,T) we can use m(Th,T) in 
(4.5) and a(Th,T) in (4.6).  

If the exchange law is uniform (non-decomposable), (4.5) and (4.6) can be 
written, giving th = | h| and recalling (2.42)  

  M (T ) Sh 
h 1
r

u(th )                   (4.7) 

  W (T ) Shh r 1
n

 v(th )                (4.8) 

If the exchange law is s.dec (non-uniform) with intensity ( )>0, the exchange 

factor in (4.5) and (4.6) is written as: , exp ( ) 
h

T

h T
z T T d . 

In particular, if the exchange law is exponential with rate i, the expressions for 
the reserves are  

M (T ) Sh 
h 1
r (1 i)(T Th )  ;  W (T ) Sh 

h r 1
n (1 i) (Th T )

   (4.9) 

From the definitions, whichever exchange law is used for the operation O, it 
follows that  

V(T) = W(T) - M(T),  T                (4.10) 

Therefore, if the exchange law implies fairness for O at time T0 only for this time 
it follows that 

M(T0) = W(T0)                    (4.11)  

However, if for such a law the invariance property holds (in particular if the 
s.dec holds) (4.11) implies that 
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M(T) = W(T),   T                  (4.12)  

In the continuous case, with operations spread in (t',t"), the reserves are obtained 
by adopting the previous formulae. Therefore: 

– in the general case of two variables law z: 

M (T;O,z) (t)z(t,T )dt
t'
T

  ;   W (T;O,z) (t)z(t,T )dt
T
t"     (4.5') 

– with the non-decomposable uniform law: 

M (T ) (t)g(T t)dt
t'
T

   ;   W (T ) (t)g(T t)dt
T
t"       (4.7') 

– with the exponential law: 

M (T ) (t)e (T t)dt  ;   
t'
T

W (T ) (t)e ( t T )dt    
T
t"      (4.9') 

while with any s.dec law with intensity ( ) the exponentials in (4.9') must be 

replaced by  exp( ( ) t
T d ) . 

With a mixed operation, valued with a law of two variables, the retro-reserve is 
obtained by adding M(T) written in (4.5) and (4.5') and the pro-reserve by adding 
W(T) written in (4.6) and (4.5'); when particular regimes are used, the 
aforementioned corresponding expressions for M(T) and W(T) must be added.  

Observation 

The previous definitions need some interpretation. As mentioned in footnote 1 of 
Chapter 1, a financial transaction is usually coupled with a real transaction of 
opposite side. In particular, an operation O can be concerned with financial 
transactions, managed by Mr A, connected with the management of a company for 
the production or the trade of assets or services, which we call project O. According 
to the accounting principle of “double entry”, such transactions are registered by Mr 
A on an account giving interest, assigned to O; each payment implies a charging of 
the account and then the creating of a credit of Mr A (or the settlement of a debt) 
while each income implies a crediting on the account and then the creating of a debt 
of Mr A (or the settlement of a credit). 

Given that according to the definitions the retrospective reserve M(T;O,z) 
represents the financial statement of Mr A at time T following the transactions with 
the sub-operation O'; it is positive or negative (i.e. a credit or a debit for Mr A) 
depending on the fact that before T is greater the number of payments or else 
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incomes for Mr A, valued financially in T through the exchange law z. 
Consequently, M(T;O,z) is the amount that, if the supplies of O subsequent to T 
would cancel, Mr A should cash (algebraically) in T such that the resulting 
operation, consisting of {O' [T, M (T;O,z)]}, would be fair in T.  

Vice versa, the prospective reserve W(T) is the capital value in T of the supplies 
of the sub-operation O”, i.e. the amount that, if the supplies of O before T would 
cancel, Mr A should pay (algebraically) in T such that the resulting operation, 
consisting of {O" [T, -W(T;O,z)]}, is fair in T.  

The names retrospective reserve and prospective reserve are also used (referring 
to expected values) in the stochastic financial insurance operations. 

Exercise 4.4 

Let us consider again Exercise 4.3 and observe that O is not fair, given that 
V(4)=867.97. It is enough to add the supply (4, -867.97) to obtain, using a rate of 
6%, a fair operation (at each time, given that the adopted law is decomposable) 

ˆ O  ={(0, -1,500) (2.5, -1,850) (3.5, 520) ((4, -867.97) (5; 4,500)} 

Calculate the reserves of ˆ O  in T=3 verifying the validity of (4.12). 

A. By applying (4.9) we obtain for ˆ O : 

M(3) = 1,500.1.063 + 1,850.1.060.5 = 3,691.22 

W(3) = -867.966.1.06-1 +520.1.06-0.5 +4,500.1.06-2 = 3,691.22 

Using an Excel spreadsheet for the same calculation, we have to proceed as 
follows. For the calculation of the retro-reserve it is necessary to take into account 
only the supplies before T=3; therefore, expanding along the columns, the supplies 
below are not considered; vice versa for the calculation of the pro-reserve it is 
necessary to take into account only the supplies after T=3; therefore, expanding 
along the columns, the supplies above are not considered. To do this (if the Excel 
macros are not applied), given that  

a' = (a+|a|)/2a = 1 if a>0, = 0 if a<0; a" = (a-|a|)/2a = 0 if a>0, = 1 if a<0   

then for the calculation of M(T) in the 1st of (4.9) Sh (1 i)(T Th )  is preserved if 
T Th  > 0 and we use 0 if T Th  < 0; on the contrary for the calculation of W(T) in 

the 2nd formula of (4.9) we use 0 if T Th  > 0 and Sh (1 i) (Th T)  is preserved if 
T Th  < 0. Therefore, setting such values by columns, we obtain the retro-reserve 
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adding the amounts valued at time 3 multiplied by a', while the pro-reserve is 
obtained adding the amounts valued at time 3 multiplied by a".  

 

i = 0.06 T = 3 

Th Sh T-Th Sh(T) a' a" Am.(T>Th) Am.(T<Th) 

0.0 -1,500.000 3.00 -1,786.52 1.0 0.0 1,786.524 0.000 

2.5 -1,850.000 0.50 -1,l904.69 1.0 0.0 1,904.692 0.000 

3.5 520.000 -0.50 505.07 0.0 1.0 0.000 505.069 

4.0 -867.967 -1.00 -818.84 0.0 1.0 0.000 -818.837 

5.0 4,500.000 -2.00 4,004.98 0.0 1.0 0.000 4,004.984 

      3,691.216 3,691.216 

Table 4.2. Calculation of retro-reserves and pro-reserves 

The Excel instructions are as follows. The first two rows are for data and titles; 
C1: 0.06; F1: 3. From the 3rd to 7th rows: 

– column A (maturity): A3: 0; A4: 2.5; A5: 3.5; A6: 4; A7: 5; 

– column B (amounts): B3: –1,500; B4: –1,850; B5: 520; B6: 867.967; B7: 4,500; 

– column C (maturity): C3: = F$1-A3; copy C3, then paste on C4 to C7; 

– column D (amounts valued in 3): D3:= B3*(1-C$1)^(F$1-A3); copy D3, then 
paste on D4 to D7; 

– column E (a' = indicates M(T)): E3: = (C3+ABS(C3))/2/C3; copy E3, then 
paste on E4 to E7; 

– column F (a" = indicates W(T)): F3: = (C3-ABS(C3))/2/C3; copy F3, then 
paste on F4 to F7; 

– column G (amounts for M(T)): G3: = -D3*E3; copy G3, then paste on G4 to G7; 

– column H (amounts for W(T)): H3: = D3*F3; copy H3, then paste on H4 to H7; 
(retro-reserve in 3): G8: = SUM(G3;G7); (pro-reserve in 3): H8: = SUM(H3;H7). 
Then: G8 = H8.  

Exercise 4.5 

From the data of the operation considered in Exercise 4.1, we observe that  



102     Mathematical Finance 

ˆ O ={(0, -1,500) ( 2.5
12 , -1,850) ( 3.5

12 , 520) ( 4
12 , -1,610.44) ( 5

12 , 4,500)} 

is fair in T0 =
4
12 . Verify the validity of (4.11) if T0 =

4
12  and its non-validity (i.e. 

unfairness of ˆ O ) if T0= 1
12 , due to the non-decomposability of the adopted laws. 

A. We add ( 4
12 , -1,610.44) to the payments after 4

12 . By calculating the 

accumulation with an SDI law at the annual rate of 5.5% we obtain M( 4
12

) = 

3,390.18; by calculating the discount with an RD law with the same rate we obtain 

V( 4
12

) = 3,390.18 = M( 4
12

). By evaluating at the time 1
12 , we obtain M( 1

12
) = 

1,506.87; instead V( 1
12

) = 1,507.12  M( 1
12

), then ˆ O  is not fair if valued at such 

time. 

The “differential equation of accumulated value” with principal flow 

A particular mixed O in the interval (0,T), which at the same time allows a 
generalization of (3.35), is obtained by considering an initial supply (0,S0) and other 
later supplies with infinitesimal amounts (t, t dt), (0  t  T), following a 
continuous principal flow t . This is useful to schematize the management of a 
small firm, by considering an initial cost for establishment and then small financial 
transactions as inflows and outflows. 

The accumulation of interest always proceeds according to the cci law with 
instantaneous intensity . With such a hypothesis the retro-reserve M(t) varies for 
effect of the financial transactions due to the flow t , as well as for the continuous 
accumulation of interest, due in S0 and in ( d (  t) according to the flow 

M(t). This process can then be obtained by solving the following linear and non-
homogenous differential equation: 

M'(t) =  M(t) - (t)  (4.13) 

In fact, generalizing (3.34'), t (0,T) in the given hypothesis the dynamics of 
the retro-reserve are described by 

M(t dt) = M(t)  M(t) dt - (t)dt  o(dt)           (4.13') 

Dividing by dt and taking the limit dt 0, given that o(dt)/dt 0, (4.13) follows. 
This equation is also called the differential equation of the accumulated value. It is 
indeed easy to see that the retro-reserve in T coincides with the amount, valued in T, 
of the invested principal due to the outflows, subtracting the inflows, before T.  
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The analytical solution of (4.13) is immediate. In fact, by multiplying both 
members by e- t, it is soon found that the general integral is 

  ( )  ( ) constantt tM t e t e dt             (4.14) 

and, due to the continuity of M(t) after 0, the particular solution of (4.13), where 
M(0) = -S0, is 

0

( )  ( )  (0) ( ) (0) ( )
t t

0

tt tM t e M e d M e e d   (4.14') 

Value (4.14') can be financially interpreted observing that, due to the s.dec of the 
exponential exchange law, the retro-reserve in t can be obtained by accumulating in t 
the property evaluations in 0 connected to the financial transactions occurring 
between 0 and t (and then of opposite sign). 

If an s.dec law is used with intensity instead of the cci, solution (4.14') is 
generalized as 

    M (t)  M (0)exp( ( )
0
t

d ) - ( )exp( ( )t
d )

0
t

d       (4.15) 

EXAMPLE 4.1.– Mr. B opens in a financial institution a c/a both for deposit (when 
Mr B is in credit) and for lending (when Mr B is in debt), ruled by an exponential 
exchange regime and with reciprocal rate, i.e. with the same instantaneous intensity, 
both the earned interest on the credits and the passive interest on the debts are 
obtained and converted time by time. Assuming the monetary unit MU = €1,000 
euros, let us suppose that the transaction in the c/a in the interval (0,t) is given by a 
deposit in 0 of MU 25.48 followed by deposits and withdrawals based on a 
continuous flow which is assumed with a parabolic shape ( ) = a+b +c

2, (0 t). 
Let us use t=2, finding the function ( ) by interpolation on the basis of the values at 
times 0, 1, 2, that are respectively: (0) = - 4 (= infinitesimal payment -4dt), (1) = 
+5 (= infinitesimal income 5dt); (2) = +12 (= infinitesimal income 12dt). Mr B 
wants to estimate the retro-reserve at time 2, i.e. his position M(2) (of credit if 
M(2)>0, of debit if M(2)<0), with a CCI law at the reciprocal annual rate of 5%. 

To do this we firstly need to calculate the flow function imposing its passage for 
the points Pi = (i, (i)), i=1,2,3, and deducing the parameters a, b, c. Then we have 
to solve the linear system 

a = -4 ; a+b+c = 5; a+2b+4c = 12   
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which has as unique solution: a = -4 , b = +10 , c = -1. Then: ( ) = -4+10 - 2. In 
addition,  = ln(1.05) = 0.04879. Therefore, due to (4.14'), M(2) is obtained from the 
following expression  

20.09758 2 0.04879
0

(2) 25.48 [ 4 10 ]M   e e d . 

Integrating by parts:  2 0.04879[ 4 10 ]e d   = 

 = 
0.04879

21 2 2
4 10 10 .

0.04879 0.04879 0.048790.04879
cost

e  

and then the integral: 2 2 0.09758
0

[ 4 10 ]e d      

0.09758 0.097581 1 2 2
4 10 10 2 4

0.04879 0.04879 0.048790.04879 0.04879
e e  = 

=  8.64434   

Therefore:    0.09758(2) 25.48 8.64434 18.56131M   e   MU 

It follows that, withdrawing from  the accumulated incomes on the  
accumulated payments, the result in t=2 is negative, i.e. there is a decrement of 
credit, equal to €9,530.38, compared to 25480.1.1025 = €28,091.69 = credit in the 
c/a that Mr B would have in absence of the flow  in the interval [0,2]. 

4.3. Usufruct and bare ownership in “discrete” and “continuous” cases 

Assuming an s.dec exchange law z and supposing that the operation O is fair at a 
given time T0 and then, due to the invariance of z, T (if this is not true, to make O 
fair it is enough to add to the original supplies (T0,-V(T0)), it is important, under the 
practical point of view the decomposition into two parts of the pro-reserve W(T) at 
time T (where inside the symbol in W() are implicit the symbols O and z): 

a) the first, called usufruct and indicated by U(T), is the evaluation in T of the 
financial transactions due only to the interest settled after T; 

b) the second, called bare ownership and indicated by P(T), is the evaluation in T 
of the remaining transactions, i.e. the supplies of O" without interest. 

Then by definition 

W (T) = U (T) + P (T), T              (4.16) 
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and, once W(T) and U(T) are calculated, the bare ownership is given by the 
difference. The distinction made in (4.16) is important, because in a financial 
operation there can be difference in the owners of the rights to the two supplies. 

The calculation of the usufruct and the bare ownership is usually done according 
to the discrete scheme that approximates the scheme of the interest continuous 
formation. Taking as an example a lending operation with periodic payments, at 
such times the interest shares are also calculated based on the current debt position 
and the time that has passed since the last payment. The usufruct in discrete case 
U(T) is then the present value in T of the interest shares after T and the bare 
ownership in discrete case P(T) is the present value in T of the principal share after 
T. On this point we will talk about amortizations and their evaluation in the 
following chapters. 

However, usufruct and bare ownership can be calculated rigorously according to 
the continuous scheme, assuming the continuous payment of interest as obtained. 
Indicating by  

˜ U ( t ) and   
˜ P ( t )  the usufruct and bare ownership in continuous case, 

we have 

W (t) =   ̃  U (t)  +   ̃  P (t) , t               (4.16') 

For   
˜ U (t)  and   

˜ P (t)  clearly additivity holds, i.e. they are obtained as the sum of 
the usufructs and the bare ownerships, calculated by the continuous scheme, of each 
supply of O”.  

Let us find the expression for  
˜ U (t)  and  

˜ P (t)  in the hypothesis that O consists 
only of transactions (Th,Sh). Let ( ) be the instantaneous intensity connected to an 
s.dec law and then dependent only on the current time . Also let Th (h = r+1,...,n) 
be the maturity times later than T. We obtain 

1
( ) ( ) ( )

h hT Tn

hh r T T
U t S d dexp           (4.17) 

1
( ) ( ) - ( ) ( ) 1 ( )

h hT Tn

hh r T T
P t W t U t S d dexp   (4.18) 

Proof 

Given the additivity, we first consider one supply (Th,Sh) with h fixed between 
r+1 and n. The earned interest between time X and X+dX is (not considering errors 
that vanish with the following integration) M(X) (X)dX, but because z is s.dec and O 
is fair, we have M(X) = W(X), X. To calculate  

˜ U (t)  we must integrate from T 
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onwards the interest M(X ) (X)dX =W(X) (X )dX discounted in T, multiplying by 

  
exp ( )

X

T
d . The prospective reserve on (Th,Sh) is: Wh(X) = 

exp ( )
hT

h
X

S d  if X Th; otherwise Wh(X) = 0 and then the integration of 

interest for X>Th gives no contribution. After some calculations we obtain: 

1
( ) ( ) ( ) exp ( )

Xn

hh r T
U t W X X d dX

1 exp ( ) ( )h hT Tn
hh r T T

S d d  

i.e. (4.17) holds. Expression (4.18) for   P(t)  is obtained subtracting the 2nd member 

of (4.17) from 1
( ) exp ( )

n h

hh r

T

T
W t S d . 

Let us find the expression for  
˜ U (t)  and  

˜ P (t)  maintaining the hypothesis of fair 
O, which we assume to be mixed, extended to the time interval (t',t") with discrete 
and continuous supplies, and assuming an exponential exchange law with intensity 
. Because of uniformity of the law, we can assume the beginning of the operation in 

the origin of time, i.e. t' = 0. Using (4.17) and (4.18) for the discrete component and 
considering that for the continuous component it is enough that the sums of the 
amounts Sh, with th (t, t"), are replaced by integral on the time of the flows ( ) 
with (t,t"), the following formulae are easily obtained 

  
˜ U (t) Shh r 1

n e (th t) (th t) ( )e ( t)
t
t" ( t)d      (4.17 ) 

  
˜ P (t) Shh r 1

n e (th t) 1 (th t) ( )e ( t)
t
t" 1 ( t) d   (4.18') 

 

Figure 4.1. Plot of the values M(t) =W(t) if O is fair 
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4.4. Methods and models for financial decisions and choices  

4.4.1. Internal rate as return index 

We will now discuss the parameters of implicit return in a financial operation, 
for which we have already considered the evaluation of the whole or of some of the 
parts (reserve, usufruct or bare ownership), as well as the decisional criteria for 
financial operations (discrete) O = {Th}&{Sh} that, considering the set of economic 
and technical facts below the set of supplies (Sh,Th), we will call financial projects 
(of whatever type: realized in agriculture, industry, commerce, services, etc.). It is 
fundamental to give a general definition of internal rate (of return for the investor, 
of costs for the borrower), relative to O. 

Let us recall the advantage of using a uniform financial law, according to which 
all evaluations can be performed at time zero, and then the exchange factors are all 
discount factors. If the law is also decomposable, which we will suppose to be true 
from now on, then it is the exponential law, characterized by a constant intensity. 
With reference to the payments, we will still use a positive sign for the incomes (or 
receipts, or cash inflows) and a negative sign for the outcomes (or outlays, or cash 
outflows) from the point of view of the subject who evaluates. We should also recall 
that an operation at a given rate is fair if its balance at a given time (and then at all 
times if the law is decomposable) is zero. However, we have seen in section 4.1 that 
the fairness of an operation depends not only on its supplies, but also on the used 
exchange law z. If we adopt an exponential exchange law, this is identified by the 
annual rate i.  

The rate i* of the CCI (or exponential) exchange law that makes the given 
operation O fair, i.e. which makes (4.4) zero, is called the internal rate of return 
(IRR)5. It summarizes the return of the project made in O and, as we will see, is 
normally used as the basis of a decisional criterion on financial projects. 

Let us analyze the concept of IRR to better clarify its meaning and its limits as a 
return measure. We have already shown that in a simple financial operation, of pure 
exchange, made of the supplies (T1,-C), (T2,+M), the percentage variation (M-C)/C, 
i.e. the related rate per period, is a measure of the return of the operation. More 
generally, for a complex operation O, defined in (4.1) or (4.1') with n>2, the IRR of 
the operation O = {Th}&{Sh} is generalized as mentioned, as the interest rate of the 
exponential operation that makes O fair. 

                                   
5 We note that with respect to O an operator can be both the investor and the borrower. We 
also observe that V(T;O,z) = 0 with an exponential law at rate i* implies, due to the 
decomposability of the law, a compensation between payments and incomes of O taking into 
account the interest at the rate i* and the current balances. 
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The meaning given to the internal rate, as a parameter whose use assures the 
fairness to the operation, implies that: 

– such a parameter can be used to measure the investment return (or the 
financing cost) in the sense that summarizes the instantaneous returns, also a 
variable in time, in their evolution in the time interval of O; 

– therefore, it corresponds to a constant instantaneous intensity in such a time 
interval, which becomes an exponential financial law. 

Indeed we have seen in section 4.1 that if O is fair in cci at the rate i*, clearly the 
discount factor i*=IRR is also the return rate inherent in the supplies of O together 
with the interest on the current reserves. We observe that it is not necessary that the 
retro-reserves (coinciding with the pro-reserves if O is fair) keep their sign in the 
time (i.e. that O is a pure project). The property also holds in the case of sign 
alternation (O = mixed project), as long as i* is a reciprocal rate, i.e. it is valid both 
for earned and passive interest6. Using (4.4) with i=i* we obtain 

- S1 =  Sh (1+i*)-(T1-Th )
h 2
n

               (4.4'') 

i.e. O can be interpreted, considering the case S1>0, as the investment of S1 at time 
T1 that gives rights to the supplies (Th,Sh), h=2,...,n, and i* is the return rate of the 
operation. 

If the payments are periodic, it is not restrictive to assume a unitary period 
(changing the unit measure and using the equivalent rate in the compound regime). 
In such a case, using v = (1+i)-1, owing to (4.4) the calculation of IRR starts from the 
equation 

V (0;O,i) Sh vh 0
h 1
n               (4.19) 

i.e. an algebraic equation of degree n in the unknown v. From the solution v* the 
IRR i* = 1/v* - 1 is obtained. Well known theorems give information on the 
solutions of (4.19) in relation to the coefficients Sh.  

                                   
6 For the general mixed project ruled by a non-reciprocal rate, it is necessary to use more 
general methods, which will be discussed in section 4.4.6. The interpretation of IRR as a 
return index in the mixed projects also implies a more rigorous widening of its meaning. This 
would lead to giving a return meaning to the IRR only when it is an index of totally detached 
or totally incorporated return, and only in the case of uniqueness of IRR for a given operation 
(see footnote 7). 
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The existence and uniqueness of the IRR for the operation O is not always 
verified. However, in order that the problem of IRR is mathematically well posed 
and financially meaningful as a return index, it is necessary that the solution v* (and 
then i*) exists and is unique. In this case we will say that i* is IRR operative. This 
eventuality is verified in some special type of investments (or also of financings, 
obtainable reversing the algebraic sign of investment amounts), in which there is 
only one sign inversion in the sequence of amounts Sh. We will consider this later. 

The value V(0;O,i) is called the discounted cash-flow (DCF) and i* is the rate 
that makes the DCF become zero. 

4.4.2. Outline on GDCF and “internal financial law”  

The concepts of DCF and IRR can be generalized going from a flat structure of 
interest rates to any structure, as long as it follows an s.dec financial law. 

If we consider a financial operation O made of the amounts s0, s1,...,sn paid at 
increasing time t0, t1,...,tn (= intervals from a given time origin) then O = 

(th ,sh )h 1
nU . We know that according to the signs of sh, O can be an investment or 

a financing. Let us evaluate according to a exchange law z( ) that, using x<y, 
becomes z(y,x) = a(y,x) for discount from y to x, while z(x,y) = m(x,y) for 
accumulation from x to y, being m(x,y) = 1/a(y,x) in the symmetric hypothesis. Let 

us only consider discounting. Then the functional G(a) = 
 

sh  h=0
n a(th , t0 ) depends 

on the function a and is called the generalized discounted cash-flow (GDCF) of O in 
t0.  

If 
    
G (ˆ a ) shh=0

n  ˆ a (th , t0) = 0 results, the discount law is called the internal 

financial law (IFL) for O and is identified with  ̂  a (th , t0) , defined in the payment 
times. Using IFL we obtain the fairness of O, i.e. the balancing between income and 
payments valued in t0.  

If   ̂  a (th , t0) =  (1+i*)-(th t0 ), the GDCF gives rise to DCF and the IFL gives rise 
to the only parameter i* (=IRR), that is the internal rate of return for O. 

If the law a(y,x) is s.dec and symmetric, we have a(y,x) = 1/m(x,y) and the 
fairness does not depend on the evaluation time. Given the payment times {t0, 
t1,...,tn}, we put 

  ah = a(th-1 ,th ) ;   mh = m(th-1 ,th ), h=1,....,n         (4.20) 
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where mh = 1/ah. 

Let us consider again the retro-reserve for O, which coincides with the pro-
reserve because of the fairness. Let us indicate by ch the retro-reserve calculated at 
time th just after the transaction sh, which represents the credit obtained in th due to 
the previous transactions. The extreme values of the sequence {ch} are constrained 
by: 

– c0 = -s0, having no earned interest yet;  

– cn = 0, due to the fairness of O valued with the IFL. 

For the other values there exists a wide flexibility, connected to the choice of the 
accumulation factors {mh}. 

The following fundamental theorem holds. 

THEOREM.– For all operations O consisting of the cash-flow (thh 1
nU ,sh ) , each 

sequence {ch} of retro-reserves, with c0 = -s0, cn = 0 under the condition ch  
0, h<n, gives rise biuniquely to a sequence of per period accumulated factors 
{ ˆ m h } ={ ˆ m (th-1, th )} that form an IFL for O, owing to the recurrent system 

ch = ch-1 mh - sh , h = 1,....,n.              (4.21) 

Proof 

The evidence of the biunique correspondence is based on the fact that the 
constraints give rise to a system of determined equations, which, given the supplies 
(th ,sh ) , identifies {mh} as a function of {ch} and vice versa. We can prove that 
{mh} is an IFL for O proceeding by induction on h. In fact 

  
ch  =  c0 mzz 1

h - suu=1
h mzz u 1

h  =  c0 m(t0, th ) su  m(tu , th )u 1
h

  (4.22) 

due to the decomposability of the financial law. Using h=n and taking into account 
the constraints on the extreme of {ch}, we obtain the fairness condition  

  su m(tu ,tn )
u 0
n

 =  0                (4.23) 

satisfied by the sequence   { ˆ m (th-1, th )}, which is IFL for O. Going backwards, we 
can prove the opposite. From the factors ˆ m h  forming an IFL, we can obtain the 
intensities for the interval (th-1, th) 
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jh = ( ˆ m h )1/( th th 1 ) 1                 (4.24) 

that give rise to the corresponding annual return. 

4.4.3. Classifications and property of financial projects 

If the retro-reserve of a project at the initial time 0 is zero, the value V at this 
time obviously coincides with the pro-reserve W.  

If V(i) is a decreasing function of i in the interval (0,+ ) and if (from the point of 
view of the investor)  

lim
i 0

V (i) Sh 0
h

lim
i

V (i) S0 0
                   (4.25) 

this is a sufficient condition for existence and uniqueness of a positive solution i=i* 
of (4.19) that gives the internal rate (sometimes called implicit rate), while its 
definition has no operative meaning without uniqueness. 

The previous sufficient condition implies that for the investor the initial supply is 
a payment and that the algebraic sum of the amounts of O is positive, i.e. there exists 
a reward given by the surplus between incomes and payments. Starting the project 
with a payment (or an income) is in fact a characteristic of investment operations (or 
financing operations). The following definitions hold. 

 

A project is called: 

– investment in the strict sense, if all payments come before all incomes; 

– investment in the broad sense, if the average maturity (defined in section 2.5.2) 
of payments comes before that of incomes at any evaluation rate. 

We have a financing (in strict or broad sense) if the aforementioned definitions 
hold after the inversion of the sign of the amounts. 

A project can be characterized by input and output amounts paid only one time 
or spread over more times, giving rise to four possibilities:  

1) PIPO (= point, input, point output); 
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2) CIPO (= continuous input, point output); 

3) PICO (= point input, continuous output); 

4) CICO (= continuous input, continuous output). 

For PIPO and PICO an investment project is simple if it is formed by one 
payment followed only by incomes; symmetrically a financing project is simple if it 
is formed by one income followed only by payments. For the simple projects of 
investment (or financing), the decreasing monotonic (or, respectively, increasing 
monotonic) V(i) is assured, and if  

0 0 0 00 0 or 0 0h hh h
S S S   S S S  

the operative internal rate exists. 

Considering investment projects, it is interesting to give more general conditions 
for the existence for the operative IRR. It can be proved that in the hypothesis of 
V(0) > 0 of the project, besides the simple investment PIPO and PICO projects 
(which are investment in strict sense), there is existence and uniqueness of the 
solutions of (4.19) also in the following cases: 

– in the other investment projects in the strict CIPO and CICO sense; 

– in the investment project in the broad sense, of type CICO, when the condition 
(also sufficient because the project is an investment in the broad sense) that the 
arithmetic mean of the time of payments (= their average maturity when i  0) 
comes before the time for the first income (= average maturity of incomes when i  
+ ) is satisfied.  

Indeed, in both cases V(i) is decreasing until it remains positive, and approaches 
S0 < 0 when i diverges, which gives the existence and uniqueness of its roots. 

The IRR has the following properties: 

– it does not change with a proportional change of the amounts; 

– the project sum of two projects with internal rate has an internal rate with value 
between the rates of the two projects, then, if the two rates coincide, the rate of the 
project sum coincides with them. 

If the aforementioned conditions for the average maturities are not satisfied, we 
can lose the existence or uniqueness of the roots of (4.19), no longer having the 
possibility of defining an operative IRR. Reversing the sign of the amounts in the 
cash-flow, the investment becomes a financing. Then the decreasing of V(i) changes 
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to increasing and the return rate is a cost rate for the financing, maintaining the 
previous property. 

Summarizing the operative interpretation of the IRR of an investment project, 
this rate is (if it exists) a return index, because it is just the interest rate of a 
profitable account fed only from the financial transactions connected with the 
project, such that, also considering the interest, the balance is zero just after the last 
transaction7.  

EXAMPLE 4.2.– We give here two examples, regarding cash-flow of investment 
projects, for which the properties defined above are satisfied. To consider financing 
projects of the same type, it is enough to reverse the sign of the monetary amounts: 

– a project of investment in the strict sense of type CICO, called , is as follows. 
In an industrial plant the following costs and revenues apply: for the first 2 
semesters only costs apply; so €70,000 in the 1st semester for buying the plant, and 
€40,000 in the 2nd semester for installations in the plant; in each of the following 10 
semesters we have operating costs for €6,000 and income for €19,000; in the 13th 
semester the divestment of the plant occurs with a net return of €15,000. The 
algebraic sum of these transactions is €35,000, thus it is a profitable investment. 
Valuing the amounts at the end of each semester, the cash-flow of  is shown by the 
following graph: 

 

-70,000  -40,000  13,000  13,000                         13,000  13,000    15,000

    1           2           3           4                         11          12          13 

 is an investment project in the strict sense, with a unique IRR, because when 
balancing in the year incomes and payments, the time of the last (net) payment 
comes before that of the first (net);  

– an investment project in the broad sense assumes an average maturity of 
payments preceding that of incomes (in net terms) at whatever evaluation rate is 
used; for this it is sufficient condition that the arithmetic mean maturity of payments 
(= their average maturity when i 0) comes before the time of first income (= 
average maturity of incomes when i + ).  

                                   
7 Here it is assumed that, if the balance does not remain constant in sign due to the dynamic 
of the financial supplies, the allowed interest rate is the same as the charged rate, i.e. the c/a 
bears reciprocal rate. In some cases, this is a strong limitation, the overcoming of which 
requires a more general approach (see section 4.4.6). 
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An example of such a type of project can be obtained by modifying the project 
in  adding a payment of €15,000 after 6 semesters. Compensating with a net 

operating income in the period for €13,000 we obtain for the 6th semester a net 
payment of €2,000 and then the cash-flow of  can be described by the following 
graph: 

  
-70,000 -40,000 13,000 13,000 13,000 - 2,000 3,000             13,000  15,000
_|_____ |______|______|______|______|______|___............._|______|___ 

1          2           3           4           5       6      7                   12          13 
 

Measuring in semesters, the arithmetic mean maturity of  payments is:  

(-70,000 -40,000.2 - 2,000 6)/(-112,000) = 1.4469 

whereas the time for the first income is 3 and then the project   is an investment in 
the broad sense with unique IRR; it is profitable because the algebraic sum of the 
amounts is +5,000. 

4.4.4. Decisional criteria for financial projects 

It is fundamental in mathematical finance to give a criterion to decide if it is 
convenient or not for an economic subject to realize a project identified by the 
financial operation O8. 

Not considering a particular criterion based on parameters and particular points 
of view, we will focus our attention on the two more important criteria as they are 
better justified in general in the light of financial equivalencies and are universally 
used in business practice.  

The first criterion is based on the value V of O in a given time of evaluation9. 
This has been defined in this chapter and its meaning is clear in quantifying O. The 
second criterion is based on the internal rate of return of O, already defined, if it is 
operative.  

Usually the first criterion is considered subjective, because V depends on the 
evaluation rate x that is subjectively fixed by the decision maker, while the second 
criterion is considered objective, because the internal rate depends only on objective 
elements, such as the fixed supplies of O. However, looking carefully at both 

                                   
8 For further discussion on the internal rate and, in general, on decision and choice in 
financial projects, see in Italian literature: Levi (1967); Trovato (1972). 
9 If the valuation time is not after the beginning of the operation or if the supplies before such 
time do not matter, the value V can be changed with the prospective reserve of O. 
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criteria, as we will see later, the decision follows from a comparison between an 
external value (due to the market, which implies a subjective evaluation by the 
decision maker) and an internal value (connected with the objective features of the 
project, i.e. its supplies or internal rate). 

It is clear that the evaluation depends on the choice of the financial law, but if, as 
is usually the case, an exponential regime is used, a feature of which is a flat 
structure of rates, it is sufficient to fix the annual rate to identify the exponential law. 
In this way the decision is not influenced by a changing of the evaluation time and 
not even by a uniform deferment of the financial supplies.  

We can therefore enunciate the first decisional criterion in the following way. 

CRITERION OF THE PRESENT VALUE (PV): the project identified by a 
financial operation O* of investment or financing is convenient for the economic 
subject “A”, and then the decision on it is positive, if and only if, at the evaluation 
rate x* chosen by “A”, the value V of O* at the evaluation time results in: V(x*) > 
0. The project identified by O* is not convenient, and then the decision on it is 
negative, if and only if in the same conditions the result is: V(x*) < 0. Finally, if and 
only if V = 0 the project is indifferent10. 

This is reasonable according to the profit criterion: if and only if the cash-flow of 
the projects implies withdrawals and deposits on a profitable account at the 
(reciprocal) rate x* (that – taking into account the received and allowed interest on 
the balance, initially zero, that is accruing from time to time – give rise to a final 
positive spread, for which the discounted evaluation V(x*) remains positive), the 
project is convenient. Otherwise it is unacceptable or, at most, indifferent.  

From the above the criterion to choose the evaluation rate immediately follows: 
it is necessary to choose the market rate of the financial operations, which are 
alternatives to the examined project. 

We could not add anything on the projects decision, given the overall validity of 
the PV criterion and its dependence on the fundamental principles of financial 

                                   
10 The decisional criterion can be extended to many projects, if the decision maker has 
available funds and he is interested in sustaining more than one, in the following way: given n 

 2 investment projects O1,...,On, each being convenient according to the evaluation rate x* 
(concerning the opportunities of financing the projects, or by vanishing profit or by rising 
cost), let us put them in decreasing order of their value, such that V1(x*) >..…> Vn(x*). For 
the decision maker it is convenient to carry on the first r  n projects with values V1(x*),..., 
Vr(x*) for which he has enough funds. He can also add one of the subsequent projects, in 
convenience order, if it can be split (as, for example, is done with stocks or company’s share), 
thus buying a part of the project. 
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equivalency and on the arbitrariness of the choice of the evaluation law. 
Furthermore, we need to take into account the common wish of economic operators, 
especially in the business world, to fix a criterion on an objective basis. This 
explains the wide spread of the second decisional criterion, which can be given as 
follows. 

CRITERION OF THE INTERNAL RATE OF RETURN (IRR): if an investment 
project, identified by an operation O*, with internal rate i* (to be considered like 
return rate), is convenient, then the decision is positive, if and only if i* > x*, where 
x* is the evaluation rate, in particular the market rate (to be considered like 
external rate of the financing costs needed for the investment). If O* is not 
convenient, then the decision is negative, if and only if i* < x*. 

For the financing projects it is enough to change signs and the inequalities side, 
and the following formulation holds: if a financing project O*, with internal rate i* 
(to be considered likecost rate) is convenient, then the decision is positive, if and 
only if i* < x*, where x* is the evaluation rate, in particular the market rate (to be 
considered like external rate of return of the investments following the financing). If 
O* is not convenient, then the decision is negative, if and only if i* > x*. 

Regarding the criterion IRR to decide on a single project, we observe that: 

– it does not have an overall validity, because it assumes the existence of an 
operative internal rate for O*; 

– the arbitrariness is not eliminated because in any case it is necessary to choose 
the external rate x*, in order to compare it with i*;  

– the foundation of the criterion, when it is enforceable, comes from that of the 
present value criterion, as follows by the proof here schematized for investment or 
financing projects with a positive internal rate. 

If V(i), which is strictly decreasing or increasing depending on the project being 
an investment or a financing, has only one root i*, the following inequality couples 
are equivalent (in the sense that one is necessary and a sufficient condition for the 
other):  

– investment projects: 

V(x*) > 0  i* > x*: O* = convenient investment 

V(x*) < 0  i* < x*: O* = non-convenient investment 
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– financing projects: 

V(x*) > 0  i* < x*: O* = convenient financing 

V(x*) < 0  i* > x*: O* = non-convenient financing 

Comment 

The positive decision on the project identified by O* is equivalent to the choice 
of O* instead of the “no project” (that is, the project of doing nothing), featured by 
the absence of cash-flow and then by the maintenance of the “status quo ante”, 
according to which the wealth of the economic subject was profitably invested, for 
example at the evaluation rate x*. The criterion IRR in the previous formulation then 
follows, because “doing O*” means the “transferring financial funds”, from the 
market to the project if O* is an investment or from the project to the market if O* is 
a financing.  

EXAMPLE 4.3.– Evaluation of investment projects. Calculation of IRR. Decisions.  

We will consider three investment projects, all having an operative IRR. 

A) The simple investment project  of the PICO type is the buying with cash at 
time 0 of a real estate equipped with an industrial plant that is producing a detached 
return, with a sale after 5 year that implies an incorporated return. Let the purchase 
price be € 47,500, the semiannual return balanced at the end of term, after tax and 
operating expenses, is €3,000, the selling price at the end of the 5th year is €50,000. 
It is then a financial project featured by the following supplies: 

 
                  -47,500      +3,000        +3,000 .......   .........+3,000       +53,000              (amounts)

 

                  0                 1/2              1                            9/2               5                         (time)  
 

Using “semester” as a measure of time and indicating with x the semiannual 
evaluation rate, the PV (or DCF) of the project , given by the initial value of its 
supplies, is expressed by 

V(x) = -47,500 + 3,000 [(1+x)-1+…+(1+x)-10] + 50,000 (1+x)-10 

which results in: 

V(0.062) = 1,770.626; V(0.07) = – 1,011.791  

Decisions according to PV criterion. By using money borrowed at a semiannual 
rate of 6.2% (for self-financing by vanishing profit or external financing by rising 
cost) the investment is convenient; however, by using money borrowed at a 
semiannual rate of 7% the investment is not convenient. 
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Calculation of semiannual IRR. The semiannual IRR, unique and certainly 
between 0.062 and 0.07, will be calculated first of all, obtaining an estimation 
through linear interpolation in the interval (0.062, 0.07) and then, to obtain the 
solution (with 9 exact decimals required), proceeding with a classical iteration (for 
more detail on these methods, see section 4.5) starting from the approximate 
solution, using Excel spreadsheets11.  

The linear interpolation leads to solving the equation  

0.062 0 1,770.92

0.07 0.062 1,011.79 1,770.92

x
 

with solution x  = 0.067091. To obtain the exact solution  ̂x  with 9 decimals, we 
apply to the classical iteration the transformation “f(x) = xg(x)/g0” to go from 
equation “f(x) = x” to the equivalent equation “g(x) = g0”, which is more useful 
here, thus using  

g(x) = V(x) + 47,500 (= present value of incomes); g0 = 47,500 (= initial payment) 

With an Excel spreadsheet we build the following five columns. The resulting 
Excel table is as follows. 

                                   
11 We notice that Excel has included a function for the calculation of IRR, starting from a 
given cash-flow with periodic payments. Furthermore, for calculating the IRR by means of 
the Excel method we need a starting approximated evaluation, which can be obtained with the 
formula in footnote 22 of this chapter regarding the linear interpolation method. However, for 
the calculation of IRR, it is useful to give an illustration of classical numerical methods. 
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0 0.067091000 47,475.956 0.999494 0.067057039 

1 0.067057039 47,487.647 0.999740 0.067039600 

2 0.067039600 47,493.652 0.999866 0.067030641 

3 0.067030641 47,496.737 0.999931 0.067026037 

4 0.067026037 47,498.323 0.999965 0.067023670 

5 0.067023670 47,499.138 0.999982 0.067022454 

6 0.067022454 47,499.557 0.999991 0.067021829 

7 0.067021829 47,499.772 0.999995 0.067021508 

8 0.067021508 47,499.883 0.999998 0.067021342 

9 0.067021342 47,499.940 0.999999 0.067021257 

10 0.067021257 47,499.969 0.999999 0.067021214 

11 0.067021214 47,499.984 1.000000 0.067021191 

12 0.067021191 47,499.992 1.000000 0.067021180 

13 0.067021180 47,499.996 1.000000 0.067021174 

14 0.067021174 47,499.998 1.000000 0.067021171 

15 0.067021171 47,499.999 1.000000 0.067021169 

16 0.067021169 47,499.999 1.000000 0.067021168 

17 0.067021168 47,500.000 1.000000 0.067021168 

18 0.067021168 47,500.000 1.000000 0.067021168 

Table 4.3. Intermediate calculations for the case of A 

The first column is built with natural numbers (i = number of steps) and the 1st 
row (i=0) has components: 0; x0= x =0.067091; g(x0); g(x0)/g0; f(x0). The 2nd row 
(i=1) starts with: 1; x1 = f(x0); the remaining part is built, using the “copy and paste” 
function, by columns. In the 3rd, 4th and 5th columns the values g(xi); g(xi)/g0; f(xi) 
for i 1 are obtained; and then in the 2nd column we obtain the values xi for i 2, that 
are the sequence converging to the solution ˆ x = 0.067021168. We get such value by 
the 17th iteration, because g(x17) = 47,500 and at the 18th iteration we can see that 
with 9 decimals x18 = x17 and then such a value is ˆ x . The compound annual IRR is 
(1+ ˆ x )2 - 1 = 0.138534. 

The Excel instructions are as follows: A1: 0; B1: 0.067091; C1: = 3000*(1-
(1+B1)^-10)/B1+50,000*(1+B1)^-10; D1: = C1/47500; E1: = B1*D1. 

A2: = A1+1; B2: = E1; copy B1,C1,D1,E1,A2, then paste on the subsequent 
elements of the same column.  
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Decisions according to IRR criterion. If the annual evaluation rate (in practice 
the market rate by vanishing profit or by rising cost) is less than 13.8534%, the 
decision on the project is positive; otherwise it is negative. 

B) The pure investment project in the strict sense of CICO type, and then with 
unique IRR, is as follows. Let us consider an industrial plant which gives: for the 
first 2 years only payments, so a purchase cost of €7,000 in the 1st year and an 
installation cost of €4,000 in the 2nd year; for the next 5 years in operative phase one 
has annual managing costs of €1,200 and annual incomes of €3,800; for the next 
year the plant is sold for a net return of €1,500. The algebraic sum of the 
transactions is €3,500 and then we have a profitable investment. Valuing the 
amounts at the end of each year, the cash-flow of  is expressed by  

 
  -7,000         -4,000        +2,600        +2,600       +2,600        +2,600        +260        +1,500     (amounts)

 

        1                2                3                 4                  5                6                 7               8               (time)  
 
Using v = (1+x)-1, the PV is expressed by 

V(x) = -7,000 v + [-4,000 + 2,600(v+v2+v3+v4+v5)]v2 + 1,500 v8  

and then 

V(0.07) = +148.51   ;   V(0.08) = -200.36  

Decisions according to PV criterion. If money is borrowed at the annual rate of 
7%, the investment is convenient, but if money is borrowed at the annual rate of 8% 
(both rates by vanishing profit or by rising cost) the investment is inconvenient. 

Calculation of IRR. The IRR, which is unique and certainly between 0.07 and 
0.08, will be calculated starting with an approximation through linear interpolation 
in the interval (0.07; 0.08) and then, to obtain the solution (with 9 decimals 
required), with a classical iteration starting from the approximate solution. The 
linear interpolation leads to the solution of the following equation: 

0.07 0 148.51

0.08 0.07 200.36 148.51

x
 

This (approximate by excess) solution is x  = 0.074257. In order to obtain the 
exact solution ˆ x , we apply the classical iteration method. Furthermore, we cannot 
start from the equation x = f(x), where f(x) = x +V(x), because in a neighborhood of 
ˆ x  is |f’(x)| >1. We need to start from the equation x = h(x) (equivalent to x = f(x)) 

where h(x) = [f(x)-mx]/[1-m]. We should use m = f’( ˆ x ) to obtain h’( ˆ x )=0 and an 



Financial Operations     121 

immediate convergence, but this is not possible because ˆ x  is unknown. 
Furthermore, in order to obtain the convergence with the sequence {xi} obtained by 
xi+1 = h(xi), it is enough that |h’( ˆ x )| <1, for which m must be a well approximated 
value of f’( ˆ x ). We can use: m = f/ x = 1+ V/ x in a neighborhood of ˆ x . Thus, 
we obtain the following function, suitable for the iteration 

h(x)
V (x) x 1

V

x
x

1 1
V

x

V (x) x
V

x
V

x

 

We assume V/ x on the interval (0.07; 0.08) containing ˆ x , thus using some 
previous calculations: V/ x = [-200.36 -148.51]/ [0.08-0.07] = -34887 results, 
which is to be substituted in the previous expression for h(x). Given that, let us use 
Excel and proceed as in section A of this example. We obtain the results in Table 
4.4. 

0 0.074257000 -3.22391125 0.074164590 

1 0.074164590 0.01840163 0.074165117 

2 0.074165117 -0.00011144 0.074165114 

3 0.074165114 0.00000067 0.074165114 

4 0.074165114 0.00000000 0.074165114 

Table 4.4. Intermediate calculations for the case of B 

The 1st row is the vector with components: 0, x , V( x ), [V( x )+34,887 x ]/ 
34,887; the 2nd row starts with the values 1, [V( x )+34,887 x ]/34,887 and the 
remaining part of the table is completed using the copy and paste function. The 2nd 
column shows the rate sequence converging to the solution; already in the 4th 
iteration we obtain ˆ x = 0.074165114 with 9 exact decimals and V( ˆ x ) = 0.  

The Excel instructions are as follows:  

– A1: 0; B1: 0.074257;  

– C1: = -7,000*(1+B1)^-1+(1+B1)^-2*(-4,000+2,600*(1-(1+B1)^-5)/B1+1,500* 
(1+B1)^-8;  

– D1:= (C1+3,4887*B1)/34,887;  



122     Mathematical Finance 

– A2: = A1+1; B2: = D1; copy B1, D1, A2, then paste on the following column 
cells.  

Decisions according to IRR criterion. If the annual evaluation rate is less than 
7.4165114%, the decision on the project is positive; otherwise it is negative. 

C) Let us consider the project obtained modifying  with the addition of 
repairing costs after 6 months for €3,000. Compensating with the net operating 
income for €2,600, at the 6th year we have a net payment of €400 and the cash-flow 
is given by  
  
-7,000       -4,000         +2,600        +2,600       +2,600         -400         +2,600     +1,500   (amount)

 

   1                 2                 3                 4                5                 6                 7               8     (time)  
 

The new project is not an investment in the strict sense, but it verifies the 
sufficient condition in order that it is an investment in the broad sense and the IRR 
exists and is unique. In fact, the arithmetic averaged maturity of payments is (-7,000 
-4,000.2 - 400.6)/(-11,400) = 1.53, and the time of first income is 3. Furthermore, 
the project is profitable because the algebraic sum of the monetary transactions is 
+500. Using v = (1+x)-1, the PV is given by 

V(x) = -7,000 v + (-4,000 + 2,600 (v+v2+v3+v5)] v2 - 400 v6 + 1,500 v8 

and 

V(0.01) = +77.49 ;  V(0.07) = -311.98.  

Decisions according to the PV criterion. If money is borrowed at the annual rate 
of 1% (by vanishing profit or by rising cost) the investment is convenient, but if 
money is borrowed at the annual rate of 2% the investment is inconvenient. 

Calculation of the IRR. We proceed in the same way as for , having the same 
conditions. The IRR, which is unique and between 0.01 and 0.02, will be calculated 
starting from an approximated value estimated using linear interpolation in the 
interval (0.01; 0.02) and then, to obtain the solution (with 9 exact decimals 
required), proceeding with classical iteration starting from the approximated 
solution. The linear interpolation leads to the following solution of the equation:  

x 0.01
0.02 0.01

0 77.49
311.98 77.49
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and then the solution x  = 0.011989. To obtain the exact solution ˆ x , we apply the 
classical iteration method, with the same transformation and procedures applied in 
section B of this example. The function to use for the iteration on the equation x = 
h(x) is 

h(x)
V (x) x

V

x
V

x

 

We assume V/ x in the interval (0.01;0.02) containing ˆ x : we obtain  

V/ x = ( 311.98 77.49) /(0.02 0.01) 38947   

and such a value is to be substituted in the previous expression for h(x). As a result, 
using Excel as in section A, the following table is obtained. 
 

0 0.011989000 1,426.860635 -1,429.377990 -2.517356 0.011924365 

1 0.011924365 1,429.813919 -1,429.751608 0.062310 0.011925964 

2 0.011925964 1,429.740801 -1,429.742360 -0.001559 0.011925924 

3 0.011925924 1,429.742630 -1,429.742591 0.000039 0.011925925 

4 0.011925925 1,429.742584 -1,429.742585 -0.000001 0.011925925 

5 0.011925925 1,429.742585 -1,429.742585 0.000000 0.011925925 

Table 4.5. Intermediate calculations for the case C 

The 1st row is the 6 component vectors: 0, x , two addends of V( x ) needed for 
the calculation, V( x ), [V( x )+38,947 x ]/38,947; the 2nd row starts with the values 1, 
[V( x )+38,947 x ]/38,947 and the remainder of the table is completed with the copy 
and paste function. The 2nd column shows the sequence of rates converging till the 
solution; at the 5th iteration we obtain ˆ x = 0.011925925 with 9 exact decimals and 
V( ˆ x ) = 0. 
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The Excel instructions are as follows.  

– A1: 0;  

– B1: 0.011989;  

– C1: = -7,000*(1+B1)^-1+(1+B1)^-2*(-4,000+2,600*(1-(1+B1)^-5)/B1);  

– D1: = -3,000*(1+B1)^-6+1,500*(1+B1)^-8;  

– E1: = C1*D1;  

– A2: = A1+1;  

– B2: = F1; copy C1,D1,E1,A2,B2, then paste on the subsequent column cells.  

Decisions according to the IRR criterion. If the annual evaluation rate (really the 
market rate by vanishing profit or by rising cost) is less than 1.1925925%, the 
decision on the project is positive; otherwise it is negative. 

Comparison between Example 4.3B and Example 4.3C. The input in  of the 
payments of €3,000 at the 6th year reduces the convenience threshold from 7.42% to 
1.19% in terms of the highest acceptable rate, making the investment C almost 
inconvenient at the current rates.   

4.4.5. Choice criteria for mutually exclusive financial projects  

In section 4.4.3 we considered a project as the only alternative to no project. 
However, it can be necessary to make a choice between two projects, which are each 
convenient on their own, but not together12. 

For this particular problem we can use a criterion based on the present value or 
otherwise on the internal rate. However, we first need to observe that a coherent 
choice implies comparability between the cash-flows of the mutually exclusive 
project in homogenous conditions; we use in this case the expression complete 
alternative, which, in the case of PIPO or PICO investment projects with only one 
initial payment, means: 

– same initial payment;  

– same time length. 

                                   
12 We stress that the external comparison rate to judge the convenience of two projects could 
not be the same, with a choice based on the circumstances. Then if the first project can be 
realized with self-financing, disinvesting a previous investment, the internal rate must be 
compared with its return rate (by vanishing profit), whereas if the second project can be 
realized only by borrowing money, its convenience must be evaluated by comparing the 
internal rate with the external rate of the financing (by rising cost), which is usually greater 
than the return rate. 
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If there is not a complete alternative between the two projects, we need to 
consider additional operations of shorter initial cost or length for the projects, which 
allow a comparison between homogenous elements. In short – considering two 
projects – if O1 and O2 do not give rise to complete alternatives, in order to make 
the comparison it is necessary to go back to complete alternatives, considering two 
additional projects Q1 and Q2 so that the unions O1 Q1 and O2 Q2 (where  is a 
union between projects) are a complete alternative13.  

Therefore, in order to choose between two projects, we can apply the following 
criterion. 

PRESENT VALUE CRITERION. Given two investment projects characterized by 
cash-flows with values V1(x*), V2(x*) positive according to an evaluation rate x* 
(concerning the projects’ financing opportunities, by vanishing profit or by rising 
cost), the decision maker who, in a complete alternative condition, can carry on only 
one of them chooses the project that gives rise to a higher value14. The same 
decisional criterion holds for mutually exclusive financing projects. 

The consideration of criteria based on the internal rate points out delicate 
questions that need to be clarified. Indeed, for the financial valuations only in the 
initial part of the company’s life we can neglect the pre-existing conditions; when 
considering the alternative projects, we need to think in terms of substitutive 
projects and then consider the difference of cash-flows. 

Indeed, if  represents the projects already realized by the considered company 
(assuming a past activity) and if the owner has to decide between two new projects 

 and  (both acceptable, if individually considered), the owner does not have to 
compare  and  but   and   and then the owner must choose, assuming a 
favorable preliminary decision on , whether or not to substitute  for  and then 
must decide on  –  = ( ) – ( ). In such a case the owner, after having 
decided to add  and , considers it more advantageous to withdraw such a decision 
(i.e. subtract  to go back from  to , not considering costs) and then to add  
to . 

In summary, a choice in alternative between  and , both investment or both 
financing projects, is equivalent to a decision on  – . Thus, the general extension 
of the IRR criterion to alternative choices with reference to the rates of the projects 
to be compared is not justified. Because of the overall validity of the evaluation, it is 

                                   
13 It is not necessary to take into account Q1 (or Q2) if its internal rate equals the evaluation 
rate, because then the value increment due to the integration is zero. 
14 Notice that a such criterion can be obtained as a particular case of the criterion described in 
footnote 10 using n = 2, r = 1. 
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indeed necessary to value the difference project of two alternative projects 
(considering that  –  and  –  have the same internal rate, if it exists operative, 
as defined in section 4.4.1) and to apply to such difference project the decisional 
criterion IRR (see Figures 4.2a and 4.2c).  

Furthermore, in the particular case of dominance between projects, we will say 
that the project b is dominant over the project a if  

  V (0;b,x*) V (0;a ,x*) ,  x* X *             (4.26) 

results (where X * is the set of variation of all possible evaluation rates), there is no 
IRR for the difference operations. In addition 

– with reference to investment, the project with higher value for each rate also 
has higher IRR. In particular, if (4.26) holds, because of the decrease of V, the 
inequality i*(b) > i*(a) concerning the IRR of a and b (see Figure 4.2b);  

– with reference to financing, the project with higher value for each rate also has 
lower IRR. In particular, if (4.26) holds, because of the increase of V, the inequality 
i*(b) > i*(a) concerning the IRR of a and b (see Figure 4.2d). 

 

 

Figure 4.2a. Investment projects Figure 4.2b 

 

Figure 4.2c. Financing projects Figure 4.2d 
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In conclusion, for the alternative choices we can enunciate the following. 

INTERNAL RATE CRITERION  

1) Case of no dominance. Given two convenient investment projects a and b 
without dominance in the rates set X*, if there exists operative IRR i* of the 
difference operation a-b (and then of b-a) and if at the rate 0 is 

  V (0;b,0) V (0;a,0) , then, indicating by x* the external evaluation rate chosen by 
the decision maker, if x* < i*, b is preferred to a; if x* > i*, a is preferred to b. 

The opposite inequalities hold if  V (0;b,0) V (0;a,0) . 

2) Case of dominance. Given two convenient investment projects a and b in a 
dominance relation in the rates set X* and having operative IRR i*(a) and i*(b), the 
decision maker prefers the project with the higher IRR. 

If the two projects to be compared are financing, their cash-flows are obtained 
from that of the investment projects changing the amounts’ sign. So, the previous 
criterion holds except for an inversion of the inequalities between the rates 
considered in case 1), whereas the project with lower IRR is chosen in case 2).  

4.4.6. Mixed projects: the TRM method  

In section 4.4.5 we clarified the relation connecting the choice between two 
alternative projects and the so-called substitutive financial operations, which are 
obtained formally as difference operations between two operations (of investment or 
financing). Such operations are used when, among other things, we want to cancel a 
project already chosen to substitute it with another project corresponding better to 
the new company’s aim15. We saw that the choice between two projects that are 
both acceptable can lead back to a difference operation.  

The next problem is moreover that a difference operation  –  between two 
investment (or financing) projects having operative IRR is not always a project with 
operative IRR. This leads to careful discussions about the non-existence or plurality 
of solutions to the IRR problem for a substitutive project. However, it is an added 
basic issue which, when resolved, leads to canceling the discussed problems and 
some formulation defects. We wish to consider this problem. 

The present value criterion described in sections 4.4.4 and 4.4.5 uses the 
evaluation rate referable to the received rates in the investment markets or the 
allowed rates in the financing markets. If the project is profitable for the 

                                   
15 See Volpe di Prignano and Sica (1981).  
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entrepreneur, he uses his profits on the investment market at a received rate of 
return; however, if the project receives money from the entrepreneur, he gets it from 
the financing market at an allowed cost rate. Yet because the project to which the 
criterion is applied changes, as usual, between investment and financing periods, the 
received and allowed rates in the respective markets are usually different and it does 
not correspond to reality to use the same rate, i.e. operate at a reciprocal rate, as 
implicitly postulated by the criterion on decisions and choices problems. We then 
have to leave, for this type of project, the restrictive view followed so far and to 
introduce new definitions and formulations, also increasing the dimension of the 
variability space of the examined quantities. 

With that aim we will now follow a formalized approach that has given rise to 
the TRM16 method. The generalization in the approach will be clarified later. 

In such an approach the entrepreneur is seen as an operator in intermediate 
position between market and project, which can be realized in an industrial (or 
commercial or financial or other) venture, which: 

a) obtains money, as input to investments for the entrepreneur – who puts his 
own means, which were profitably invested, or is financed by the external money 
market, for the most the bank system – with a cost that in the first case is lost profit, 
and in the second case is emerging cost;  

b) gives subsequently (but the cycle could be reversed, as in the insurance sector) 
output as money that the entrepreneur then invests in a profitable manner.  

In the process described here, there are, in general, four different rates that are 
considered:  

– a pair of rates, usually different17, for the cost and profit of money, which are 
the received and allowed rates (for the entrepreneur) of external type on the money 
market, i.e. the cost rate r* of financing or self-financing needed for investment in 
the project and the return rate k* of the investments made with the profit from the 
project;  

– a pair of internal rates, ˆ r  to debit and ˆ k  to credit of the project, i.e. that relate 
to the objective characteristics of the project. As we will see, this second pair is 
enlarged on an infinite set of equivalent pairs. 

Let us assume a discrete approach, i.e. considering the supplies of the 
entrepreneur relative to the project and the following balances only periodically (in 

                                   
16 See Teichroew, Robichek, Montalbano (1965a) and (1965b). 
17 We will come back to this later. 
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particular, annually). In addition, let us indicate by {ai}, (i = 0, 1,..., n) the cash-flow 
of the project (i.e. ai < 0 for payments, ai > 0 for income of the entrepreneur).  

In the TRM method the following classification is introduced, relative to the 
dynamic of the cumulated current balance St = St (k,r), (t= 0,1,..., n), of a c/a 
devoted to the examined project. From this c/a the inputs come out and to this c/a 
the outputs come in, both connected to the project18.  

A project is said to be pure (at a given rate) when accounting the financial 
transactions connected to a project in a profitable c/a at such a rate, the balances Sh, 
h=0,...,n-1 before the last transaction have the same sign, while Sn = Sn(k,r) can be 
>=< 0, constituting the final result of the project (from the viewpoint of the 
entrepreneur).  

Obviously: 

– we have a project of pure investment (at the investment rate r) if the first 
financial transaction is a payment and, accounting for the interest charged to the 
project at the rate r, the balances Sh, h=0,...,n-1, remain  0. In formulae this is: 

St St 1(1 r) at ,   t =1,...,n

S0 a0 < 0   ;    Sh 0  ,  h =1,...,n -1
            (4.27) 

– we have a project of pure financing (at the financing rate k) if the first 
financial transaction is an income and, accounting for the interest charged to the 
project at the rate k, the balances Sh, h=0,...,n-1, remain  019. In formulae this is:  

St St 1(1 k) at ,   t =1,...,n

S0 a0 > 0   ;    Sh 0  ,  h =1,...,n -1           (4.28) 

A project is said to be mixed (at the investment rate r and at the financing rate k) 
if it is neither a pure investment at the rate r, nor a pure financing at the rate k. Thus, 
accounting the interest charged or favorable to the project at such rates, the balances 
Sh, h=0,...,n-1, do not remain of constant sign, and it can result in >=< 0, with 
alternating phases of investment and financing. In formulae 

                                   
18 Observe that the balance from the viewpoint of the entrepreneur is equal to the retro-
reserve from the viewpoint of the project, identified as a counterpart of the entrepreneur. 
19 An example of a project of pure investment is given, if S(tn) = 0, by the management of a 
loan at the rate r from the viewpoint of the lender. An example of a pure financing project is 
given, if S(tn) = 0, by managing a loan at the rate k from the viewpoint of the borrower. For 
the management of loan with amortization, see Chapter 6. 
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S0 a0

     St St 1(1 r) at     if   St-1 < 0    

St St 1(1 k) at      if   St-1 0

t = 1,...,n          (4.29) 

Both for mixed and pure projects the value 

S(k,r) = Sn = Sn(k,r)                  (4.30) 

can be >=< 0, constituting the final result of the project (from the viewpoint of the 
entrepreneur), given by the returns, which are also financial, the net of costs, which 
are also financial, at the final time instead of at the initial time (as seen for the 
present value), and on the basis of a complex and non-decomposable financial law, 
identified by (4.29), if the project is mixed and a non-reciprocal rate is applied, i.e. if 
r and k are both used for calculation and they are different. 

We can now see the substantial limit of the present value criterion (see section 
4.4.4) which is not useful for projects that interchange in time the role of investment 
taking money (if St < 0) and that of loan giving money (if St > 0) because we use 
only one evaluation rate whereas the rules of the money and financial market usually 
give rise to different return rates in the two cases. 

The specification of the rate, when the pure or mixed feature of the project is 
specified, is needed because such a feature depends on the level of the investment or 
financing rate. In fact, every mixed project with a0 < 0, when r increases and 
exceeds a given r-min, becomes a project of pure investment and the result does not 
depend on k; in the same way every mixed project with a0 > 0, when k increases 
beyond a given k-min, becomes a project of pure financing and the result does not 
depend on r. 

The property can be proved immediately observing that, if a0 < 0 and thus the 
interest is initially accrued at the rate r, there exists a proper r-min, such that, h = 
1,...,n-1, the absolute value of the decrement Sh - Sh-1 exceeds every ah >0. Thus the 
balances, initially negative, remain negative for the whole time-length before the last 
transaction that gives the final result and the project results of a pure investment. 
Analogously, if a0 > 0 and then the interest is initially accrued at the rate k, there 
exists a proper k-min such that h = 1,...,n-1 the increment Sh - Sh-1 exceeds the 
absolute value of each ah  0. Thus the balances, initially positive, remain positive 
for the whole time length before the last transaction that gives the final result and the 
project results of a pure financing.  
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Let us consider the geometric approach on the Cartesian plane. Restricting 
oneself to the mixed projects on the basis of the given rates (then with r<r-min if a0 
< 0, with k<k-min if a0 > 0), while (4.30) generalizes the concept of present value of 
a project, the generalization of the internal rate is obtained choosing among the level 
curves of the surface (4.30), defined on the quadrant k 0, r 0  of the plane Okr, 
the one corresponding to the parameter = 0 and then to a nil final result. 
Analogously the IRR is solution  ̂ i  of the equation V( ˆ i ) = 0. Therefore the equation   

S(k,r) = 0                      (4.31) 

implicitly defines on the aforementioned quadrant a continuous and increasing 
curve, that is called final fairness curve (or more briefly, fairness curve, or also 
curve of equilibrium) of the project, generally asymptotic to the straight line r = r-
min if a0 < 0 or to the straight line k = k-min if a0 > 0. The explicit forms of (4.31), 
to be considered alternatively, can be written as 

r r0(k)

k k0(r)
                       (4.32) 

where r0 and k0 are the functional operators, one inverse of the other, which realize 

the final fairness of the project. Any pair ( ˆ k , ˆ r )  satisfying (4.31) and then, because of 
(4.32), such that  

ˆ r r0( ˆ k )  or ˆ k k0( ˆ r )             (4.33) 

identifies a point on the fairness curve and then has the following meaning: given 
the cash-flow of the mixed project, if in the investment stages of the project, 
interests (positive for the entrepreneur) are debited to it at the rate ˆ r , such that the 
project is in equilibrium (i.e. gives rise to a null final balance) we have to credit 
interest (negative for the entrepreneur) at the rate ˆ k  during the financing stages of 
the project. And the inverse holds. The points on curve (4.31), with coordinates of 
type ( ˆ k , ˆ r ), are financially equivalent in the sense that they all assure a zero final 
result 

THEOREM.– The generalization of IRR implies a connection between internal 
allowed and charged interest rates, i.e. needed to maintain the equilibrium of the 
project, with necessarily concordant variations rate.  
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Proof 

Given that it is not restrictive to suppose that the function S(k,r) has continuous 
first order partial derivatives, we have 

S

k
0    ;     

S

r
0                     (4.34) 

This is because according to (4.29), on curve (4.31) if k increases, fixing r, at the 
end of the process, S increases; while if r increases, fixing k, S decreases. Given that 
the derivative of the function r r0 (k)  exists and is continuous, explicit equation of 

the curve S=0. Moreover, dr0 (k)
dk

dr

dk

S

k
/

S

r
0  holds. Analogous conclusion 

for the inverse function k k0 (r)  with derivative dk0 (r)
dr

dk

dr

S

r
/

S

k
0 . 

 On the contrary, if a0 < 0 and r = r-min or a0 > 0 and k = k-min, the project 
becomes pure and the fairness curve becomes a parallel to the r = 0 or k = 0 axis 
respectively. In such a case it is enough to consider only one of the external rates, r* 
of cost or k* of return; then the problem is led back to the one-dimensional case and 
to the criteria as given in sections 4.4.4 and 4.4.5. 

 Summarizing the geometric point of view, on varying the supplies, the fairness 
curves (4.31), locus of the points (k,r), cover: a) if a0 < 0, a mixed region defined by 
(k>0, 0<r<r-min) and in the top a region as pure investment defined by (k>0, r r-
min); b) if a0 > 0, a mixed region defined by (0<k<k-min, r>0) and in the right side a 
region as pure financing defined by (k k-min, r>0) (see Figure 4.3). 

 

Figure 4.3a and b. Fairness curves 
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4.4.7. Decisional criteria on mixed projects 

 Let us now extend the decisional and choice criteria for mixed project as seen 
with the one rate approach in sections 4.4.4 and 4.4.5. In addition, we observe that it 
is enough to consider here decisional criteria: indeed, substitutive operations can be 
led back to a mixed project and we have shown in section 4.4.5 the way in which 
decision on them is equivalent to choices in alternative between projects of 
investment or financing. The decisional criterion discussed later has a geometric 
interpretation in Figure 4.4 with reference to the plane Okr. 

 

 

Figure 4.4a and b. Plot of the decisional criterion 

When we are interested in rates that generate a mixed project (i.e. when there is 
plurality in the sign of the periodic balances sequence), from the viewpoint of the 
entrepreneur, the broker between the project and the financial market, the following 
decisional criteria apply. 

a) The final result (FR) criterion, which extends the present values (PV) criterion  

The decision depends on the sign of the final balance evaluated at the external 
cost rates r* and returns k*, already defined, on the capital market. Therefore, the 
criterion can be formulated as follows. 

If 

S(k*,r*) > 0                       (4.35) 

the mixed project is convenient for the firm; if  

S(k*,r*) < 0                       (4.35') 
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the mixed project is inconvenient for the firm; if 

S(k*,r*) = 0                      (4.35") 

the mixed project is indifferent for the firm. 

Proof 

It is obvious that (4.35), (4.35') and (4.35”) generalize the criterion of present 
value described in section 4.4.4, which uses the relations V(x*)>0, V(x*)<0 and 
V(x*)=0. To prove the FR criterion with a direct argument, it is enough to observe 
that, from the viewpoint of the acting firm, the amounts of the cash-flow towards the 
market regarding the examined project are exactly the opposite of those of the cash-
flow towards the project. In other words, the firm takes the amounts from the market 
with charged interest rate k* and invests them in the project at the allowed rate ˆ r , 

and, in addition, takes the amounts from the project with charged interest rate ˆ k  and 
invests them in the market at the allowed rate r*. If the final effect of such a 
transaction is a spread S(k*,r*)>0, then the mixed project is convenient, otherwise it 
is not. 

b) With the return and cost rates (RCR) criterion, which extends the internal rate 
(IRR) criterion 

In such a criterion (which, in contrast to the IRR criterion, can always be 
applied) it is necessary to consider four types of rates already indicated, i.e. the pair 
(k*,r*) of return and cost rates on the external market and the infinite pairs 
(k0(r),r0(k)), coordinates of points on the well established fairness curve which 
replaces the IRR, with varying ˆ r  = investment rate in the project and ˆ k  = financing 
rate from the project, from the viewpoint of the firm. The RCR criterion can then be 
formulated as follows. 

Given a mixed project  (at the considered rate) with a fairness curve of 
equation (4.31) with explicit form: r = r0(k) (i.e.: k = k0(r)), using (from the 
viewpoint of the acting firm): 

– k* = external allowed return rate on the market;  

– r* = external charged cost rate on the market20; 

                                   
20 The original formulation of the TRM criterion, more limited than the one shown here, 
introduces only one external rate called cost rate of the capital, then assuming k*=r* and 
considering the point P* bounded on the bisector r=k. Thus, only the intersection points are 
meaningful of the fairness curve with the bisector r=k, which have coordinates equal to each 
other and to the IRR of the project, which are non-operative in the case of absence or plurality 
of solutions, leading back to the inconveniences of the IRR criterion. We consider more 
advantageous a more general schematization to complete the innovative contribution of this 
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– k0(r*) = charged internal financing rate from the project, corresponding to the 
internal investment rate ˆ r  = r*; 

– r0(k*) = allowed internal investment rate in the project, corresponding to the 
internal financing rate ˆ k  = k*; in the hypothesis that the firm has access without 
limitation to the financing market at the rate r* and to the investment market at the 
rate k* (constant rates for the whole length of the mixed project), thus; 

– if and only if the point P* = (k*,r*) is below the fairness curve, where  

r0(k*) > r* ;   k0(r*) < k*               (4.36) 

(the inequalities are either both true or both false due to the increasing behavior of 
the fairness curve), the project  is convenient for the firm; 

– with the same hypothesis and positions, if and only if the point P* = (k*,r*) is 
above the fairness curve (4.31), where 

r0(k*) < r* ;   k0(r*) > k*              (4.36') 

(the inequalities are either both true or both false), the project  is inconvenient for 
the firm; 

– with the same hypothesis and positions, if and only if the point P* = (k*, r*) is 
on the fairness curve (4.31), where 

r0(k*) = r*;  k0(r*) = k*              (4.36") 

(the equalities are either both true or both false), the project  is indifferent for the 
firm. 

Proof 

(4.36") follows from the definition of fairness curve. In addition, we can verify 
the equivalence between (4.35) and (4.36), between (4.35') and (4.36'), and between 
(4.35") and (4.36"), from which the RCR criterion follows.  

To prove the validity of the RCR criterion with a direct argument, we firstly 
observe that a project is convenient or inconvenient if it gives rise to a property 
variation that increases the return rate and/or decreases the cost rate or it gives rise to 

                                   
scheme, also due to the fact that in the capital market it is used to work with non-reciprocal 
rates. 
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a property variation with opposite effects. Besides, let us indicate by St the balance 
with accumulated interest until time t, as defined in (4.29). 

So if, when St < 0, the firm has invested in the mixed project  at the rate r* 
equal to the cost rate on the market (then without spread), then in equilibrium 
condition the financing from , when St > 0, is ruled by the rate k0(r*). Therefore: 

– if the second inequality of (4.36) holds, investing the profit from such 
financing on the market at the rate k* > k0(r*), the firm has a positive spread and  
is convenient; 

– if the second inequality of (4.36’) holds, investing the profit from such 
financing on the market at the rate k* < k0(r*), the firm has a negative spread and  
is inconvenient; 

– if the second equality of (4.36”) holds, investing the profit from such financing 
on the market at the rate k* = k0(r*), the firm has zero spread and  is indifferent. 

Otherwise if, when St > 0, the firm is financed from the mixed project  at the 
rate k* equal to the return rate on the market (then without spread), then in 
equilibrium condition the investment in , when St < 0, is ruled by the rate r0(k*). 
Therefore 

– if the first inequality of (4.36) holds, taking money on the market at the rate r* 
< r0(k*), the firm has a positive spread and  is convenient; 

– if the first inequality of (4.36’) holds, taking money on the market at the rate r* 
> r0(k*), the firm has a negative spread and  is inconvenient; 

– if the first inequality of (4.36”) holds, taking money on the market at the rate 
r* = r0(k*), the firm has zero spread and  is indifferent. 

EXAMPLE 4.4.– Regarding decisions on mixed projects, we use the classical 
example of the oil pump project shown by Lorie and Savage21 to be a typical 
substitutive operation in the industrial field. Let us suppose that from an oil well, 
containing crude valued US$20,000 (we are using low numbers for sake of brevity: 
it would be enough to assume as unit a suitable power of 10), oil is being extracting 
at time 0 with a pump system that enables the completion of the extraction in 2 
years, and there will be a gross profit of US$10,000 at the end of the 1st year and the 
same at the end of the 2nd year. It is then necessary to evaluate at time 0 the 
convenience of the installation of a more efficient pump, with a substitution cost of 
US$1,600, which enables the extraction to be completed within one year, with a 
profit of US$20,000 before the end of the 1st year. 

                                   
21 See Lorie and Savage (1955) (see footnote 16). 
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Not considering previous flows, which have no influence here, the project  (= 
old pump) implies the following supply sequence: 

 : (1; +10,000) (2; +10,000) 

while the project  (= new pump) implies the following supplies: 

 : ( 0; -1,600) (1; +20,000). 

Note that  does not have IRR and it is convenient with any evaluation rate, 
while  is a simple project with IRR = 1,150%. However, here, being a substitutive 
operation, we are interested in the difference project given by  

 - : (0, -1,600) (1, +10,000) (2, -10,000) 

Now  -  is a mixed project that starts with a payment and becomes a pure 
investment project only if r  r-min = 525%. 

The final fairness curve r = r0(k) has equation 

r = 5.25 – 6.25/(1 + k)                  (4.37) 

an explicit form of S = 0, which in this case is written as follows: 

[–1,600 (1 + r) +10,000] (1 + k) –10,000 = 0 

On the basis of the original criterion TRM (see footnote 20), the intersections of 
(4.37) with the bisector r=k correspond to the following IRR values: 

k* = r* = 0.25 = 25% ;   k* = r* = 4 = 400% 

(non-operative IRR because we have obtained more solutions). Therefore, the 
substitution of the pump, i.e. the change from  to  is convenient if and only if 
the market rate, reciprocal for investments and financings, chosen for the evaluation 
is between 25% and 400%. Indeed, the fairness curve (4.37) has the concavity 
downwards and, intersecting the 1st bisector in points P1 = (0.25;0.25) and P2 = 
(4;4), all points P* of such a bisector between P1 and P2, with 0.25 < k* = r* < 4, 
are such that S(P*) > 0. So, with such external rates the substitution is convenient. 
Instead, if k* = r* is > 4 or < 0.25, the substitution is inconvenient.  
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On the basis of the version of TRM introduced here, which considers market 
rates k* and r* to be different, it is necessary to evaluate the pair (k*,r*) to adopt 
and accept the substitution if and only if the point P* = (k*,r*) is below the curve 
(4.37). 

Observe that the oil company, if it performs the substitution, will have to obtain 
at time 0 a loan of US$1,600 at the cost rate r* and will have to invest at time 1 the 
higher profit of US$10,000 at the return rate k*. 

4.5. Appendix: outline on numerical methods for the solution of equations 

4.5.1. General aspects 

As seen in this chapter and as will be seen in Chapter 5 in the particular case of 
annuity flows, the congruity relations between the flows of a financial operation and 
their capital values at a given time are often considered in financial mathematics 
under different hypotheses on the adopted financial laws. However, such a relation 
can be thought of as equations where the unknown is the length or the rate, and all 
other quantities are given. The duration is seldom considered unknown indeed,  
while the rate is often considered like this. Then there is the classic problem of the 
calculation of the IRR of a financial operation O. We saw the importance of this in 
the previous sections, but we did not consider its calculation.  

The solution of such a problem is not simple and sometimes it is impossible from 
the algebraic viewpoint, when the equation on the rate is not simple enough to give a 
solution in closed form. It is then necessary to apply numerical methods that give 
approximate solutions, unless iterative methods are applied to obtain the numerically 
exact solution in the desired number of decimals. The field of application of such 
methods is much greater than the calculation of IRR. We then consider it opportune 
to give a brief insight into the theoretical and applicative aspects of more suitable 
numerical methods even if the software available on PCs enables an easy evaluation 
of equation roots, in particular the IRR of an operation O. 
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On the choice of the calculation methods for IRR, it is necessary to consider that 
due to the versatility and popularity of PCs, and also of the pocket calculator, many 
of the methods used in the past are now obsolete. We will consider few classic 
methods, favoring the iterative ones. 

4.5.2. The linear interpolation method 

Given a function f(x), which is continuous and monotonic in an assigned interval, 
and given a value k, it is necessary to find the value ˜ x  such that f( ˜ x )=k, i.e. the root 
of the equation:  

g(x):= f(x)-k = 0                  (4.38)  

The linear interpolation is done starting from the values x1 and x2, which are 
close enough between them and to the root22, and such that f(x1) > k, f(x2) < k  23 as 
well. Then an approximate estimation of ˜ x , which we will indicate by x0, is 
obtained from the abscissa of the intersection with y = k of the secant line to the 
graph of y=f(x) in the points with abscissas x1 and x2. Indeed, x0 is also the root of 
the secant the graph of g(x) in the points with abscissas x1 and x2. This easily results 
in 

x0 x1
k f (x1)

f (x2) f (x1)
(x2 x1)

              (4.39) 

                                   
22 The search for x1 and x2 “by chance” is not easy and not very scientific. In the financial 
problems in which we are interested, a starting approximate value ˆ x  of the solution ˜ x , in 
order to find by small steps such values x1 and x2 , can be easily obtained on the basis of 
linear hypothesis, using the arithmetic mean and the SDI law. In particular we consider an O 
satisfying the condition that the arithmetic mean maturity of the payments precedes the time 
of first income; we know that it is enough for O to be an investment in the broad sense and 
then to have an operative IRR. Let us denote by i the arithmetic mean of incomes, with e 
that of payments, with E the sum of payments and with I the sum of incomes. Thus, being e < 

i, the IRR approximated ˆ x  is found from: E[1+( i- e) ˆ x ] = I. In the particular case of simple 
investment with payment V0 in 0 and incomes Rh in h, the arithmetic mean maturity of 

payments is then e = 0, that of incomes is i = hR
hh / R

hh  and ˆ x  follows from: V0 (1 + 

i ˆ x ) = R
hh . We have such a situation in the amortization of the debt V0 with installments 

Rh (see Chapters 5 and 6). 
23 Then x1 > x2 if f increases in the interval, and x1 < x2 if f decreases. If f(x) is the initial 
value of an annuity at rate x, then f is decreasing and convex, so ˜ x < x0 (see Chapter 5). 
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Proof 

 The secant defined before is the straight line through P1 [xl, f(xl)] and P2 x2, 
f(x2)], with equation 

y f (x1)
f (x2) f (x1)

x x1

x2 x1                  (4.39') 

and making a system with y=k, the solution x=x0 expressed by (4.39) is obtained. 

The solution x0 is an approximation by excess, i.e. greater than the exact value, if 
f(x) (and then g(x)) is also decreasing and convex (i.e. with upwards concavity)24 or 
increasing and concave (i.e. with downwards concavity); instead x0 is an 
approximation by defect, i.e. smaller than the exact value, if f(x) (and then g(x)) is 
decreasing and concave or increasing and convex.  

The linear interpolation procedure can be iterated using in the procedure the 
found approximated root, i.e., using the initial positions, acting analogously on the 
interval (x0, x1) or alternatively (x0, x2), thus  satisfying the condition of sign 
discordance between f(xi)-k, i = 1 or 2, and f(x0)-k. The estimation x0

(2)  of the root is 
then obtained. Proceeding analogously again we obtain a sequence x0

(i) , i = 2, 3,... 
converging to the root ˜ x , i.e. such that f( x0

(i)) converges to k; this procedure gives 
the secant method (see below)  

Exercise 4.6 

To buy a shed to be used in an industrial company for the price of €170,000, the 
entrepreneur sells stocks earning €22,000 and for the remaining part he enters into a 
loan to repay (for the amortization procedure see Chapter 6) with 10 annual delayed 
installments Rh = R+hD, (h = 1,...,10), where R = 17,030, D = 0.04R; then R1= 
17,711.20; R2 = 18,392.40;.....; R10 = 23,842.00. Find the loan rate. 

A. The loaned amount is S = 170,000 – 22,000 = €148,000; the length is n = 10; 
the installments are given. To find the rate we apply the linear interpolation method 
on the function f(x), related to the equivalence (6.2) specified in section 6.2 

S f (x) : Rh (1 x) h
h 1
10

 

We start from a rough rate ˆ x  according to footnote 22. This results in  

                                   
24 We find this case in the search for IRR in an amortization operation for a capital given as 
loan, with given cash-flow and maturity of installments (see Chapter 6), solving an equation 
of type V(i) = 0, with V(i) decreasing and with upwards concavity. 
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i h(R hD)h / (R hD)h  = (55+0.04.385)/(10+0.04.55) = 5.77; V0 

(1 i  ˆ x ) R
hh

 becomes: 148,000 (1+ 5.77 ˆ x ) 207.766  

then: ˆ 0.06999x . We obtain: g(0.06999) = -4,724.11 and with g(x) decreasing the 
root is a value < 7%. Acting on f(x), with decreasing x we easily obtain using Excel 

f(0.0675) = 145,037.74 

f(0.0650) = 146,832.06 

f(0.0625) = 148,659.58 

The solution ˜ x  is evidently between 6.50% and 6.25%. Applying (4.39) we 
obtain: 

0

148,000.00 148,659.58
0.0625 0.025 0.06340

146,832.06 148,659.58
x   

 

In accordance with the fact that x0 is approximation by excess, f(0.0634) = 
147,996.13 < 148,000 follows. Interpolating on the interval (0.0625; 0.0634) (2nd 
step of the “secant method”, of which the starting interpolation is the 1st) we obtain:  

00

148,000.00 148,659.58
0.0625 (0.0634 0.062) 0.063395

147,996.13 148,659.58
x   

  

The process can be iterated again if we require many exact decimal digits; 
otherwise the rate 6.3395% is a satisfactory estimation of the loan rate, giving rise to 
a relative spread of less than 10-4.  

Financial application with numerical solution using the linear interpolation 
methods has been developed in section 4.4.4, Example 4.3. 

4.5.3. Dichotomic method (or for successive divisions) 

This is a procedure with slow convergence, which can be applied, due to its 
simplicity, if we have a calculator.  

In order to solve equation (4.38), assuming f(x) to be continuous and monotonic, 
by assumption we know that the searched root is in an interval with known extreme 
a, b, with a<b, considering the case: f(a) > k, f(b) < k.  

Let us define x0 = (a+b)/2, d = |a–b| and then, with recursive process, 
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xh xh 1

d

2h
  ;   h = 1, 2, ...               (4.40) 

using in (4.40) the sign + or - according to, respectively, f(xh-1) > k or f(xh-1) < k. In 
such a case we obtain a sequence x0, x1,…,xh,… approximating a root ˜ x  of (4.38), 
in the sense that the pairs of consecutive values xh-1, xh are extremes of numeric 
interval containing ˜ x  and of amplitude d/2h geometrically decreasing with ratio 1/2. 

4.5.4. Secants and tangents method 

Given equation (4.38) with f(x) continuous and differentiable, considering the 
case that f(x) is decreasing and has upwards concavity (the changes are obvious for 
the other cases), it is necessary to find the abscissa ˜ x  of the point X intersection of 
the graphs y = f(x) and y = k (see Figure 4.5). The procedure on the secants being 
considered here is a particular case of that shown in section 4.5.2. 

 

Figure 4.5. Secants and tangents method 

Initial step 

Starting from point A of the f(x) graph with abscissa xA > ˜ x  (where f(xA) < k), 
possibly already approximated to ˜ x  on the basis of preliminary information (see 
footnote 22), the tangent to the curve in A is analytically found, whose equation is 

y - f(xA) = f'(xA) - (x - xA)                  (4.41) 
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and by using y=k we obtain the abscissa xT of the point T intersection of the tangent 
with the line y=k: 

xT = xA + (k - f(xA))/f'(xA)                  (4.42) 

Due to a well known property of the upwards concave function, the inequalities  
xT< ˜ x <xA hold. Then (4.42) is an estimate of ˆ x approximated by defect. 

Furthermore, we obtain the equation of the secant to the curve through A and the 
point T' of the graph with abscissa of T, obtaining     

y f (xA )
f (xT ) f (xA )

x xA

xT xA

                 (4.43) 

and using y=k we find from (4.43) that xS is an approximation that is better than xA. 
We then find the numeric interval, with extremes xT , xS, which includes the 
searched solution ˜ x . 

Next step  

The procedure can be iterated, starting from xS, instead of xA, obtaining an 
approximated interval, which is contained in the previous intervals and has 
decreasing amplitude converging to 0, thus obtaining  a very good estimate of ˜ x .  

4.5.5. Classical iteration method 

Let us give a brief insight on a widely-applied method – classical iteration – 
which requires the availability of a personal computer (or a programmable 
calculator). Let us consider an equation, written in the form x =f(x), where f(x) exists 
continuously in an interval containing the root , for which the approximate value 
x0 is known. If the equation is given in the form: g(x) = g0, it is enough to use: f(x) 
= x+g(x)- g0 or, if g0 0, to use: f(x) = x g(x)/g0. The method consists of finding the 
following sequence, starting from x0: 

xh = f(xh-1);  (h = 1, 2, 3,...)                (4.44) 

because if {xh} converges, its limit is necessarily given by the root of the given 
equation.  

The validity of the procedure arises from the following theorem. 
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THEOREM.– If there exists a root  of the equation x = f(x) – where f(x) is defined, 
continuous and differentiable in the interval J containing  and x0 is a value of first 
approximation of – and moreover if, for a given prefixed constant H satisfying: 0 
<H <1, we obtain x J: |f'(x)|  H, then the sequence {xh} converges and its limit 
is the root . If, instead, in J we obtain: |f'(x)| > 1, then the sequence does not 
converge to 25. 

Figures 4.6a and b geometrically show the convergence and divergence cases of 
the iteration method. 

 

 
 (convergence to x ) (divergence from x ) 

Figure 4.6a and b. Convergence and divergence cases of the iteration method 

Referring to the graphs of y = x and y = f(x), it is geometrically obvious that the 
convergence of the procedure is faster the closer the value of |f '( )| is to zero. 
Therefore, the following transformation is used to accelerate the convergence or to 
make it possible when it is not on f, i.e. if |f '( )| > 1. Using  

                                   
25 Let us give a brief proof of the theorem. If |f'(x)|  H with 0<H<1, due to the Cavalieri-
Lagrange theorem we can write, given that by definition ˜ x f ( ˜ x ) , recalling (4.44) and 
introducing x 0  between ˜ x  and x0): 

˜ x x1 f ( ˜ x ) f (x0 ) f ' (x 0 )  ˜ x x0 ˜ x x0 ˜ x x0  

and analogously, for h = 2,3,... 

˜ x xh f ( ˜ x ) f (xh 1) f ' (x h 1)  ˜ x xh 1 ˜ x xh 1
h ˜ x x0  

Because of the formula: lim
h

h 0  and of a comparison theorem, 

 
0 lim

h
˜ x - xh = ˜ x - x0 lim

h

h 0       that is        lim
h

xh ˜ x  

follows, and then the thesis. Again for a comparison theorem, if |f'(x)|>1 holds in a 
neighborhood of ˜ x , a diverging geometric sequence is minorant of {xh-x0}, therefore this 
sequence is also diverging and its values deviate from the solution ˜ x . 
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m = f '( )   ;   g(x) = [f(x) - m x]/(1 - m)           (4.45) 

g'(  = 0 follows, and it is easy to verify that the equation x = g(x), to which the 
iteration method can be applied in the best conditions, is equivalent to x = f(x), so it 
has the same roots. Obviously m cannot at first be found in an exact way because it 
is unknown ; however, an approximate value almost satisfies the condition and 
then the method can be applied in order to obtain a quick convergence.  

Financial applications using the classical iteration method for numerical 
solutions have been developed in section 4.4.4, Example 4.3.  


